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Kurimoto-Sivashinsky Equation



The Question

 Are numerical solutions to pattern-forming partial 

differential equations sensitive to time stepping 

methods?

 The Kurimoto-Sivashinsky Equation is a good model 

equation to study for this question



Has analogs in atmospheric science



Has analogs in atmospheric science



What makes it so interesting?

 Assume solution is periodic on interval 𝐿 (common 
assumption in atmospheric models)

 Given initial condition 𝑢 𝑥, 0 = 𝑢0 𝑥
 Divide L in to N parts ( so N is the spatial resolution)

 For large values of L > 12𝜋 , equation produces chaotic 
solutions

 For smaller values of 𝐿 solutions have a wide array of 
structure

 Define  𝐿 =
𝐿

2𝜋

L

N times



Solutions are very sensitive to  𝐿

 Initial condition a randomized wave with small (10−5) 

amplitude,  𝐿 = 3.6398,𝑁 = 128



Solutions are very sensitive to  𝐿

 Increase  𝐿 by 0.0001 with exact same initial 

condition



Numerical Methods

 Separate the spatial (x) and temporal (t) derivatives 

so it looks like 

 Use “pseudo-spectral” method for the spatial 

derivatives

 Time stepping method for time derivative
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Solving the spatial derivatives

 If 𝑢 𝑥, 𝑡𝑛 is known, then we can use the Discrete 

Fourier Transform to approximate 𝑢 𝑥 as,

 Where  𝑘 =
2𝜋𝑘

𝐿

 So differentiation becomes simple multiplication

𝑢 𝑥, 𝑡𝑛 ≈  

𝑘=−
𝑁
2

𝑁
2−1

 𝑢 𝑘 𝑒𝑖 𝑘𝑥

𝜕2𝑢

𝜕𝑥2
≈ −  

𝑘=−
𝑁
2

𝑁
2−1

 𝑘2  𝑢 𝑘 𝑒𝑖 𝑘𝑥
𝜕4𝑢

𝜕𝑥4
≈  

𝑘=−
𝑁
2

𝑁
2−1

 𝑘4  𝑢 𝑘 𝑒𝑖 𝑘𝑥



Solving the spatial derivatives

 For the nonlinear term, since 𝑢(𝑥, 𝑡𝑛) is known and 
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and then proceed as with the linear 

terms.
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 So from the original equation,
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Solving the spatial derivatives

 For the nonlinear terms, since 𝑢(𝑥, 𝑡𝑛) is known and 
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 Can calculate 
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and then proceed as with the linear 

terms.

 Let 𝑣 =
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 We have
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Spectral view of the equation

 From the spectral view of the equation, 

 The 2nd derivative is a forcing term for low wave 

numbers ( |𝑘| > 1)

 The 4th derivative is a source of dissipation in the 

high wave numbers

 The nonlinear term transfers energy from low to high 

wave numbers
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Spectral view of the equation



Time-Stepping methods

 Basic method: 

Leapfrog 

 Two modifications

1. Leapfrog + periodic Predictor-Corrector, 

2. Robert-Asselin-Williams (RAW) filter

 How do these two methods compare in the formation 

of structure in this equation?



Leapfrog time-stepping scheme

 The leapfrog scheme (centered difference) is an 

approximation for the time derivative



𝑢 𝑥,𝑡𝑛+∆𝑡 −𝑢(𝑥,𝑡𝑛−∆𝑡)

2∆𝑡
≈  

𝜕𝑢

𝜕𝑡 𝑡𝑛

= 𝑓(𝑢 𝑥, 𝑡𝑛 )

 Where the right hand side is treated as a function 𝑓

 This method is unstable 



Predictor Corrector method

 Stability can be improved even more by restarting 

every 25 steps in time.  

 When starting from a single initial condition 𝑢(𝑡0), 
need 𝑢(𝑡0 + ∆𝑡) to use leapfrog again.

 Use Forward Euler method* to calculate 𝑢 𝑡0 +
∆𝑡

2

 Use leapfrog on  𝑢 𝑡0 and 𝑢 𝑡0 +
∆𝑡

2
to calculate 

𝑢 𝑡0 + ∆𝑡 then continue as before

 *Forward Euler:  
𝜕𝑢

𝜕𝑡
𝑡𝑛

≈
𝑢 𝑡𝑛 + ∆𝑡 − 𝑢(𝑡𝑛)

∆𝑡



Robert-Asselin-Williams Filter 

 A separate improvement on the basic leapfrog 

scheme is the RAW filter
𝑢 𝑥, 𝑡𝑛 + ∆𝑡 − 𝑢(𝑥, 𝑡𝑛 − ∆𝑡)

2∆𝑡
= 𝑓(𝑢 𝑥, 𝑡𝑛 )

 Where,

 And,

𝑢 𝑥, 𝑡𝑛 = 𝑢 𝑥, 𝑡𝑛 +
ν(1 − 𝛼)

2
[𝑢 𝑥, 𝑡𝑛 − 2∆𝑡 − 2𝑢 𝑥, 𝑡𝑛 − ∆𝑡 + 𝑢 𝑥, 𝑡𝑛 ]

𝑢(𝑥, 𝑡𝑛 − ∆𝑡) = 𝑢(𝑥, 𝑡𝑛 − ∆𝑡) −
ν𝛼

2
[𝑢 𝑥, 𝑡𝑛 − 2∆𝑡 − 2𝑢 𝑥, 𝑡𝑛 − ∆𝑡 + 𝑢 𝑥, 𝑡𝑛 ]



Robert-Asselin-Williams Filter

 What this is saying is we compute the next time step 

 Then push u(𝑡𝑛) and 𝑢(𝑡𝑛 + ∆𝑡) towards the 

midpoint 

𝑢(𝑡𝑛 − ∆𝑡)

𝑢(𝑡𝑛 + ∆𝑡)

𝑢(𝑡𝑛)

𝑢(𝑡𝑛 + ∆𝑡)

𝑢(𝑡𝑛)

𝑢(𝑡𝑛 − ∆𝑡)



What is the problem?



What is the problem?



Compared to more accurate method



Compared to more accurate method



Conclusion: Time-stepping method matters

 4th order Runge-Kutta method takes time and memory

 Can also be difficult to implement in existing code

 In general RAW gives a better idea of the behavior of the 
solution than the Predictor Corrector method

 It is also very simple to update existing code

 Williams has produced a more general filter to give up to 
7th order accuracy

 When looking at the development of structure time-
stepping matters!


