## Kyle Williams

Under the Direction of Dr. Lee Panetta

U EVOLUTION, L* $=5.4978, N=128$

$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}=0$
Kurimoto-Sivashinsky Equation

## The Question

- Are numerical solutions to pattern-forming partial differential equations sensitive to time stepping methods?
- The Kurimoto-Sivashinsky Equation is a good model equation to study for this question


## Has analogs in atmospheric science



## Has analogs in atmospheric science



## What makes it so interesting?

- Assume solution is periodic on interval $L$ (common assumption in atmospheric models)
- Given initial condition $u(x, 0)=u_{0}(x)$
- Divide L in to N parts ( so N is the spatial resolution)

- For large values of L ( $>12 \pi$ ), equation produces chaotic solutions
- For smaller values of $L$ solutions have a wide array of structure
- Define $\hat{L}=\frac{L}{2 \pi}$


## Solutions are very sensitive to $\hat{L}$

- Initial condition a randomized wave with small $\left(10^{-5}\right)$ amplitude, $\hat{L}=3.6398, N=128$



## Solutions are very sensitive to $\hat{L}$

- Increase $\hat{L}$ by 0.0001 with exact same initial condition



## Numerical Methods

- Separate the spatial (x) and temporal ( t ) derivatives so it looks like

$$
\frac{\partial u}{\partial t}=-u \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{4} u}{\partial x^{4}}
$$

- Use "pseudo-spectral" method for the spatial derivatives
- Time stepping method for time derivative


## Solving the spatial derivatives

- If $u\left(x, t_{n}\right)$ is known, then we can use the Discrete Fourier Transform to approximate $u(x)$ as,

$$
u\left(x, t_{n}\right) \approx \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{u}(k) e^{i \hat{k} x}
$$

- Where $\hat{k}=\frac{2 \pi k}{L}$
- So differentiation becomes simple multiplication

$$
\frac{\partial^{2} u}{\partial x^{2}} \approx-\sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} \hat{k}^{2} \tilde{u}(k) e^{i \hat{k} x} \quad \frac{\partial^{4} u}{\partial x^{4}} \approx \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} \hat{k}^{4} \tilde{u}(k) e^{i \hat{k} x}
$$

## Solving the spatial derivatives

- For the nonlinear term, since $u\left(x, t_{n}\right)$ is known and
$u \frac{\partial u}{\partial x}=\frac{1}{2} \frac{\partial u^{2}}{\partial x}$,
- Can calculate $\frac{u^{2}}{2}$ and then proceed as with the linear terms.
- Let $v=\frac{u^{2}}{2}$
- So from the original equation,

$$
\frac{\partial u}{\partial t}=-\frac{\partial v}{\partial x}-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{4} u}{\partial x^{4}}
$$

## Solving the spatial derivatives

- For the nonlinear terms, since $u\left(x, t_{n}\right)$ is known and $u \frac{\partial u}{\partial x}=\frac{1}{2} \frac{\partial u^{2}}{\partial x}$,
- Can calculate $\frac{u^{2}}{2}$ and then proceed as with the linear terms.
- Let $v=\frac{u^{2}}{2}$
- We have
$\frac{\partial \widetilde{u}}{\partial t} \approx-\sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} i \hat{k} \tilde{v}(k) e^{i \hat{k} x}+\sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1}\left(\hat{k}^{2}-\hat{k}^{4}\right) \tilde{u}(k) e^{i \hat{k} x}$


## Spectral view of the equation

- From the spectral view of the equation,
$\frac{\partial \widetilde{u}}{\partial t}=-\sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} i \hat{k} \tilde{v}(k) e^{i \hat{k} x}+\sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1}\left(\hat{k}^{2}-\hat{k}^{4}\right) \tilde{u}(k) e^{i \hat{k} x}$
- The $2^{\text {nd }}$ derivative is a forcing term for low wave numbers ( $|\widehat{k}|>1$ )
- The $4^{\text {th }}$ derivative is a source of dissipation in the high wave numbers
- The nonlinear term transfers energy from low to high wave numbers

$$
-\underbrace{u \frac{\partial u}{\partial x}}_{\text {distributive }}-\underbrace{\frac{\partial^{2} u}{\partial x^{2}}}_{\text {forcing }}-\underbrace{\frac{\partial^{4} u}{\partial x^{4}}}_{\text {dissipative }}
$$

## Spectral view of the equation




## Time-Stepping methods

- Basic method:

Leapfrog

- Two modifications

1. Leapfrog + periodic Predictor-Corrector,
2. Robert-Asselin-Williams (RAW) filter

- How do these two methods compare in the formation of structure in this equation?


## Leapfrog time-stepping scheme

- The leapfrog scheme (centered difference) is an approximation for the time derivative
- $\left.\frac{u\left(x, t_{n}+\Delta t\right)-u\left(x, t_{n}-\Delta t\right)}{2 \Delta t} \approx \frac{\partial u}{\partial t}\right|_{t_{n}}=f\left(u\left(x, t_{n}\right)\right)$
- Where the right hand side is treated as a function $f$
- This method is unstable




## Predictor Corrector method

- Stability can be improved even more by restarting every 25 steps in time.
- When starting from a single initial condition $u\left(t_{0}\right)$, need $u\left(t_{0}+\Delta t\right)$ to use leapfrog again.
- Use Forward Euler method* to calculate $u\left(t_{0}+\frac{\Delta t}{2}\right)$
- Use leapfrog on $u\left(t_{0}\right)$ and $u\left(t_{0}+\frac{\Delta t}{2}\right)$ to calculate $u\left(t_{0}+\Delta t\right)$ then continue as before
* *Forward Euler: $\left.\frac{\partial u}{\partial t}\right|_{t_{n}} \approx \frac{u\left(t_{n}+\Delta t\right)-u\left(t_{n}\right)}{\Delta t}$


## Robert-Asselin-Williams Filter

- A separate improvement on the basic leapfrog scheme is the RAW filter

$$
\frac{u\left(x, t_{n}+\Delta t\right)-\overline{\overline{u\left(x, t_{n}-\Delta t\right)}}}{2 \Delta t}=f\left(\overline{u\left(x, t_{n}\right)}\right)
$$

- Where,

$$
\overline{\overline{u\left(x, t_{n}\right)}}=u\left(x, t_{n}\right)+\frac{v(1-\alpha)}{2}\left[\overline{\overline{u\left(x, t_{n}-2 \Delta t\right)}}-2 \overline{u\left(x, t_{n}-\Delta t\right)}+u\left(x, t_{n}\right)\right]
$$

- And,

$$
\overline{\overline{u\left(x, t_{n}-\Delta t\right)}}=\overline{u\left(x, t_{n}-\Delta t\right)}-\frac{v \alpha}{2}\left[\overline{\overline{u\left(x, t_{n}-2 \Delta t\right)}}-2 \overline{u\left(x, t_{n}-\Delta t\right)}+u\left(x, t_{n}\right)\right]
$$

## Robert-Asselin-Williams Filter

- What this is saying is we compute the next time step
- Then push $\mathrm{u}\left(t_{n}\right)$ and $u\left(t_{n}+\Delta t\right)$ towards the




## What is the problem?

U EVOLUTION, $\mathrm{L}^{+}=5.9, \mathrm{~N}=128$


## What is the problem?

UEVOLUTION, $\mathrm{L}^{*}=5.9, \mathrm{~N}=128 \mathrm{RAW}$


## Compared to more accurate method



RK4 Lhat=3 $N=128$


## Compared to more accurate method

Leapfrog Pred. Cor., Lhat $=5.9, N=128 R A \mathrm{w}$

R.A.W. Filter, Lhat $=5.9, \mathrm{~N}=128$


RK4 Lhat $=5.9 \mathrm{~N}=128$


## Conclusion: Time-stepping method matters

- $4^{\text {th }}$ order Runge-Kutta method takes time and memory
- Can also be difficult to implement in existing code
- In general RAW gives a better idea of the behavior of the solution than the Predictor Corrector method
- It is also very simple to update existing code
- Williams has produced a more general filter to give up to $7^{\text {th }}$ order accuracy
- When looking at the development of structure timestepping matters!

