1. Find the derivative of each of the following functions. Do not simplify your answers.

a) \(f(x) = \sqrt[4]{\ln(7x^2 - 5)} \left[\log(x^3 + 9^x) \right] \)

b) \(f(x) = \frac{\log_8(6x^2 + \pi)}{7(e^x - 3)} \)

c) \(f(x) = \sqrt[3]{(e^{3x^2} \ln x)^2} \)
2. List the three conditions necessary for a function $f(x)$ to have a relative maximum or minimum at $x = c$.

1.

2.

3.

3. A local coffee shop has a weekly price demand equation of $p = 30 - \frac{x}{20}$, where p is the price (in dollars) for a cup of coffee and x is the number of cups sold.

a) If the current price for a cup of coffee is $5.00, describe the effect on demand if price increases by 12%. Is demand elastic, inelastic, or unit elastic at the current price level?

b) At what price level is the shop’s revenue maximized?

c) On what interval of p is demand elastic?
4. For each of the following functions, find any critical values, the intervals where the function is increasing/decreasing, and any relative extrema. Be sure to classify the type of each extrema.

a) \(f(x) = x - \ln x \)

b) \(f(x) = x^2 e^{-x} \)
c) \(f(x) = \frac{3x^2 - 2x}{(x - 4)^2} \)

5. Suppose a company that makes deluxe toasters has a weekly demand equation given by \(p(x) = 150e^{-0.02x} \), where \(p \) is the price in dollars when \(x \) toasters are sold. Determine where the company’s revenue is increasing.
6. Briefly state the difference between partition numbers and critical values of a function f.

7. Doc and Marty’s Skateboard Shop has determined the price-demand equation for its “futuristic” skateboards to be $x + 0.10p = 37.5$, where x is the number of skateboards that can be sold at a unit price of p dollars. The current price for a skateboard is $150. In order to increase their revenue, what should the Doc and Marty do?

8. Consider a function f that is smooth and continuous on its domain of $(-\infty, 2) \cup (2, \infty)$. Also, $f'(x) = \frac{8(x + 4)}{(x - 2)^4}$. Find any critical values of $f(x)$, the intervals where $f(x)$ is increasing/decreasing, as well as where any relative extrema occur (be sure to specify the type of any relative extrema).
9. The elasticity of demand for a certain commodity is \(E(p) = \frac{2p^2}{1200 - p^2} \), where \(p \) is the unit price in dollars. The current price per item is $30.

a) If this price is increased by $1.20, describe the effect on demand.

b) For what values of \(p \) will a percentage change in price cause a smaller percentage change in demand?

c) Given the current price is $30, what should the company do to increase revenue?

10. Sketch an example of a function that has a critical value at \(x = 3 \) such that \(f'(3) \) does not exist and there is a relative maximum at \(x = 3 \).

11. If a function has a critical value at \(x = 5 \), does that mean it has a relative max or min at \(x = 5 \)? Explain graphically.