1. Find the derivative of each of the following functions. Do not simplify your answers.

a) \(f(x) = \sqrt[4]{\ln(7x^2 - 5)} \left[\log(x^3 + 9^x) \right] \)

\[
f'(x) = \frac{1}{4} \ln(7x^2 - 5) \left[\frac{1}{x} \left(\frac{1}{x^2 + 9} \right)(3x^2 + 9^x \ln 9) \right] + \\
\left[\log(x^3 + 9^x) \right] \left[\frac{3}{4} \left(\frac{1}{7x^2 - 5} \right)(14x) \right]
\]

b) \(f(x) = \frac{\log_8(6x^2 + \pi)}{7(e^x - 3)} \)

\[
\left(\frac{e^x - 3}{7(e^x - 3)} \right) \left[\frac{1}{6x^2 + \pi} \left(12x \right) \right] - \left(\log_8(6x^2 + \pi) \right) \left[7e^x \ln(7)(e^x) \right] / \left(7(e^x - 3) \right)^2
\]
c) \(f(x) = \sqrt[3]{(e^{3x^2} \ln x)^2} \)

\[f'(x) = \frac{2}{3} \left(e^{3x^2} \ln x \right)^{-\frac{1}{3}} \]

\[
\left[e^{3x^2} \left(\frac{1}{x} \right) + (\ln x) [e^{3x^2} (6x)] \right]
\]

2. List the three conditions necessary for a function \(f(x) \) to have a relative maximum or minimum at \(x = c \).

1. \(f' = 0 \) or \(f' \) DNE.
2. \(f \) is defined at \(x = c \). (i.e. in domain of \(f \))
3. \(f' \) changes sign at \(x = c \).
3. A local coffee shop has a weekly price demand equation of \(p = 30 - \frac{c}{20} \), where \(p \) is the price (in dollars) for a cup of coffee and \(x \) is the number of cups sold.

a) If the current price for a cup of coffee is $5.00, describe the effect on demand if price increases by 12%. Is demand elastic, inelastic, or unit elastic at the current price level? (change)

\[a_0 p = 600 - x \]
\[x = 600 - a_0 p \]
\[\Rightarrow E(p) = \frac{-p f'(p)}{f(p)} = \frac{-p (-20)}{600 - a_0 p} \]
\[E(s) = 0.2 \quad < 1 \Rightarrow \text{inelastic} \]
\[\Rightarrow 0.2 \times (18\%) = 3.6 \% \Rightarrow \text{demand down by 3.6\%} \]

\% change demand = \(E(p) \times \% \text{change price} \)

b) At what price level is the shop's revenue maximized?

\[\frac{20p}{600 - 20p} = 1 \quad \Rightarrow \quad 20p = 600 - 20p \]
\[40p = 600 \]
\[p = \frac{15}{2} \]

\[p = 7.5 \]

\[e(p) = 1 \]

\[E(p) = \frac{20p}{600 - 20p} > 1 \quad \Rightarrow \quad 20p > 600 - 20p \]
\[40p > 600 \]
\[p > 15 \]

\[\times \text{ need upper bound for } p! \]

\[x > 0 \Rightarrow 600 - 20p > 0 \Rightarrow 600 > 20p \]
\[\Rightarrow p < 30 \]

\[(15, 30) \]
4. For each of the following functions, find any critical values, the intervals where the function is increasing/decreasing, and any relative extrema. Be sure to classify the type of each extrema.

a) \(f(x) = x - \ln(x) \)

1. Domain: \(x > 0 \) \(\Rightarrow (0, \infty) \)
2. Partition #’s \(f' \):
 - \(f' = 1 - \frac{1}{x} \)
 - \(x = 1 \)
3. Critical values of \(f' \):
 - \(x = 1 \)

 Sign chart of \(f' \):
 - \(f' : \bigcirc \bigcirc \bigcirc \)
 - \(f' \downarrow \uparrow \)

 Den. on \((0,1)\)
 Dom. on \((1, \infty)\)
 Local \text{min} \ at \(x = 1\)
 \(f(1) = 1 \)

b) \(f(x) = \frac{2xe^x}{e^x - 1} \)

1. Domain: \((-\infty, \infty) \)
2. Partition #’s \(f' \):
 - \(f' = x^2e^{-x}(1) + e^x(\Delta x) \)
 - \(x^2e^{-x}(-x + 2) \)
 - \(x = 0 \)
 - \(e^{-x} = 0 \)
 - \(-x + 2 = 0 \)
 - \(x = 2 \)
3. Critical values of \(f' \):
 - \(x = 0 \)
 - \(x = 2 \)

 Sign chart of \(f' \):
 - \(f' : \bigcirc \bigcirc \bigcirc \)
 - \(f' \downarrow \uparrow \)

 Den. on \((-\infty, 0)\) and \((2, \infty)\)
 Local \text{rel min} \ at \(x = 0\)
 is \(f(0) = 0 \)
 Local \text{rel max} \ at \(x = 2\)
 is \(f(2) = \frac{4}{e^2} \)
c) \(f(x) = \frac{3x^2 - 2x}{(x-4)^2} \)

1. Domain: \((-\infty, 4) \cup (4, \infty)\)

2. Partition #1's for \(f' \):
 \[
 f' = \frac{(x-4)^2 [6x - 2] - (3x^2 - 2x)2(x-4)(1)}{(x-4)^2} \]
 \[= \frac{(x-4)[(6x-2) - (3x^2 - 2x)]}{(x-4)^2} \]
 \[= \frac{(6x^2 - 2x^2 - 4x + 8)}{(x-4)^3} \]
 \[= \frac{2x^2 - 4x + 8}{(x-4)^3} \]

3. Critical values of \(f \):
 \[x = \frac{8}{22} \]

4. Sign chart for \(f' \):

 \[
 f' \left\{ \begin{array}{c}
 - & 0 & + & - \\
 \frac{8}{22} & + & 4 & - \\
 f & \downarrow & \uparrow & \downarrow
 \end{array} \right.
 \]

 - Min. on \((\frac{8}{22}, 4)\)
 - Dec. on \((-\infty, \frac{8}{22})\) and \((4, \infty)\)

 Local min at \(x = \frac{8}{22} \)

 \[f(\frac{8}{22}) = \ldots \]

Title: Feb 25-10:20 AM (5 of 10)
5. Suppose a company that makes deluxe toasters has a weekly demand equation given by \(p(x) = 150e^{-0.02x} \), where \(p \) is the price in dollars when \(x \) toasters are sold. Determine where the company's revenue is increasing.

\[R = x \cdot p = 150xe^{-0.02x} \]

1. Domain: \([0, \infty)\) *because \(x \geq 0\) for # of toasters

2. Partition #’s of \(R'\):

\[R'(x) = 150x \left[e^{-0.02x} \cdot (-0.02) \right] + e^{-0.02x} \left[150 \right] \]

\[= 150 e^{-0.02x} \left(-0.02x + 1 \right) \]

\[R' = 0 \Rightarrow -0.02x + 1 = 0 \Rightarrow x = 50 \]

R’ DNE \(\Rightarrow \) Never!

3. Critical values of \(R\): \(x = 50 \)

4. Sign chart of \(R'\):

\[R' \begin{cases} + & 0 < x < 50 \\ - & x > 50 \end{cases} \]

\(\text{Dnn. m} (0, 50) \)

\(\text{always parenth.} \)
6. Briefly state the difference between partition numbers and critical values of a function.

Partition numbers are where \(f' = 0 \) or \(f' \text{ does not exist} \). Critical values are also where \(f' = 0 \) or \(f' \text{ does not exist} \), but they also have to be in the domain (i.e., \(f \) is defined).

Critical values are a subset of partition numbers. They are partition numbers that are in the domain of \(f \).

7. Doc and Marty’s Skateboard Shop has determined the price-demand equation for its “futuristic” skateboards to be \(x + 0.10p = 37.5 \), where \(x \) is the number of skateboards that can be sold at a unit price of \(p \) dollars. The current price for a skateboard is $150. In order to increase their revenue, what should the Doc and Marty do?

\[
\text{solve for } x = f(p) ! \quad x = 37.5 - 0.10p
\]

\[
E(p) = \frac{-p(-0.10)}{37.5 - 0.10p} \Rightarrow E(150) = 0.3 < 1
\]

\(\Rightarrow \text{inelastic} \)

\(\text{max. revenue } \Rightarrow \text{increase price} \)
8. Consider a function f that is smooth and continuous on its domain of $(-\infty, 2) \cup (2, \infty)$.
Also, $f'(x) = \frac{8(x+4)}{(x-2)^4}$. Find any critical values of $f(x)$, the intervals where $f(x)$ is increasing/decreasing, as well as where any relative extrema occur (be sure to specify the type of any relative extrema).

1. Domain: $(-\infty, 2) \cup (2, \infty)$

2. Partition #1's of f': $f' = \frac{8(x+4)}{(x-2)^4}$

 $f' = 0 \Rightarrow x = -4$

 f' MNE \Rightarrow bottom $= 0 \Rightarrow x = 2$

3. Critical values of f: $x = -4$

4. Sign chart of f':

 f' Θ Θ Θ

 f ↓ 4 ↑ 0 ↑

 $
 \downarrow$

 $\Delta u. \text{ on } (-4, 2) \text{ and } (2, \infty)$

 $\Delta d. \text{ on } (-\infty, -4)$

 Local min at $x = -4$
9. The elasticity of demand for a certain commodity is
\[E(p) = \frac{2p^2}{1200 - p^2}, \]
where \(p \) is the unit price in dollars. The current price per item is $30.

a) If this price is increased by $1.20, describe the effect on demand.

\[\text{Change} \]
\[\% \text{ chg dem} = E(30) \times \% \text{ chg price} \]

\[E(30) = 6 \]
\[\% \text{ chg price} \rightarrow \text{new-old} = \frac{31.20 - 30}{30} = 0.04 \Rightarrow 4\% \]

\[\Rightarrow \% (4\%) = 24\% \Rightarrow \text{Demand ↓ by 24\%} \]

b) For what values of \(p \) will a percentage change in price cause a smaller percentage change in demand?

\[E(p) < 1 \Rightarrow \frac{2p^2}{1200 - p^2} < 1 \]
\[\Rightarrow 2p^2 < 1200 - p^2 \]
\[\Rightarrow 3p^2 < 1200 \]
\[\Rightarrow p^2 < 400 \]
\[\Rightarrow p < 20 \text{ or } p > -20 \]
\[\Rightarrow (0, 20) \]

i.e. where is demand inelastic?

c) Given the current price is $30, what should the company do to increase revenue?

Since \(E(30) = 6 > 1 \Rightarrow \text{elastic} \)

\[\Rightarrow \text{ma. rev} \Rightarrow \text{decr. price} \]
10. Sketch an example of a function that has a critical value at $x = 3$ such that $f'(3)$ does not exist and there is a relative maximum at $x = 3$.

\[f(3) \text{ defined} \hspace{1cm} \begin{align*} f'(3) &\neq 0 \hspace{1cm} \text{at} \ x = 3 \end{align*} \]

11. If a function has a critical value at $x = 5$, does that mean it has a relative max or min at $x = 5$? Explain graphically.

\[\boxed{\text{No}} \hspace{1cm} \text{Possible to have critical value with no relative (local) extrema.} \]