Answers to WIR 2 Review Problems

1. a.) \(y = 6 - 4x \), D: all reals, R: all reals

2. a.) The object is located at the point (6, 8)

3. \(x = -3t, y = 3 + 2t \) Answer not unique.

4. The lines intersect at the point \(\left(\frac{2}{5}, \frac{36}{5} \right) \)

5. \(x = 1 - 4t, y = 5 + t \) Answer not unique.

6. a) 4
 b) 3
 c) Does not exist
 d) 2
 e.) \(\infty \)
 f.) 7

7. \(\infty \)
8. $x = -1$ is a vertical asymptote;
\[
\lim_{x \to -1^-} f(x) = -\infty; \quad \lim_{x \to -1^+} f(x) = \infty.
\]
Note: there is an open hole in the graph of $f(x)$ at the point $(7, \frac{1}{8})$.

9. -1

10. $-\frac{1}{3}$

11. $\frac{2}{\sqrt{3}}$

12. $-\frac{1}{9}$

13. The limit does not exist because
\[
\lim_{x \to 2^+} f(x) = -\infty \quad \text{while} \quad \lim_{x \to 2^-} f(x) = \infty
\]

14. $\frac{1}{2}$

15. The limit does not exist because
\[
\lim_{x \to 3^+} f(x) = 17 \quad \text{while} \quad \lim_{x \to 3^-} f(x) = 5
\]

16. The limit does not exist because
\[
\lim_{x \to 2^+} f(x) = 1.5 \quad \text{while} \quad \lim_{x \to 2^-} f(x) = -1.5
\]

17. $-\infty$

18. Note there is an open circle at the point $(4, 1)$ and $(4, -1)$. The limit does not exist at $x = 4$ because
\[
\lim_{x \to 4^+} f(x) = 1 \quad \text{while} \quad \lim_{x \to 4^-} f(x) = -1
\]

19. 4

20. 0