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Neural Codes, Decidability, and a New Local Obstruction to Convexity\ast 

Aaron Chen\dagger , Florian Frick\ddagger , and Anne Shiu\S 

Abstract. Given an intersection pattern of arbitrary sets in Euclidean space, is there an arrangement of convex
open sets in Euclidean space that exhibits the same intersections? This question is combinatorial
and topological in nature, but is motivated by neuroscience. Specifically, we are interested in a
type of neuron called a place cell, which fires precisely when an organism is in a certain region,
usually convex, called a place field. The earlier question, therefore, can be rephrased as follows:
Which neural codes, that is, patterns of neural activity, can arise from a collection of convex open
sets? To address this question, Giusti and Itskov proved that convex neural codes have no ``local
obstructions,"" which are defined via the topology of a code's simplicial complex. The absence of
local obstructions is a necessary criterion for a code to arise from open sets that form a good cover.
Here we prove that this criterion is also sufficient. The question of whether a code can be realized by
a good cover thus reduces to local considerations. Algorithmically, however, this criterion---which
is a method for proving a code is nonconvex---is infeasible: We prove that the good-cover decision
problem is undecidable. Nonetheless, we reveal a stronger type of local obstruction that prevents a
code from being convex, and prove that the corresponding decision problem is NP-hard. Our proofs
use combinatorial and topological methods.
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1. Introduction. This work addresses the following question: Which binary codes arise
from the regions cut out by a collection of convex open sets in some Euclidean space? One
such code is

\scrC = \{ 1110, 0111, 1100, 0110, 1010, 0011, 1000, 0100, 0010, 0001\} 
= \{ 123, 234, 12, 23, 13, 24, 34, 1, 2, 3, 4\} ,

which arises from the following convex open sets U1, U2, U3, and U4:
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codeword 0011=34

codeword 1110=123

codeword 0001=4

Here, some of the regions are labeled by the corresponding codewords in \scrC . We can view each
codeword as a vector in \{ 0, 1\} 4 or as its support set, here a subset of \{ 1, 2, 3, 4\} .

A closely related question is: Which intersection patterns arise from a collection of convex
sets? This question asks only which sets Ui intersect, and not whether, for instance, there is
a region where U1 and U2 intersect outside of U3. This topic---intersection patterns of convex
sets---has been studied extensively (see [24] for an overview), but the first question we posed
has caught attention only recently [3, 4, 5, 6, 7, 8, 9, 12, 15, 17, 21, 31].

The recent interest in this area is motivated by neuroscience, specifically from the study of
neurons called place cells. The discovery of place cells by O'Keefe and Dostrovsky in 1971 was
a major breakthrough that led to a shared 2014 Nobel Prize in Medicine or Physiology [20] for
O'Keefe. A place cell encodes spatial information about an organism's surroundings by firing
precisely when the organism is in the corresponding place field. In this context, a codeword
represents the neural firing pattern that occurs when the organism is in the corresponding
region of its environment: the ith coordinate is 1 if and only if the organism is in the place
field of neuron i. The resulting set of codewords is called a neural code.

Place fields can be modeled by convex open sets [5], so we are interested in the following
restatement of the question that opened this work: Which neural codes can arise from a
collection of convex open sets? To address this problem, Giusti and Itskov identified a local
obstruction, defined via the topology of a code's simplicial complex, and proved that convex
neural codes have no local obstructions [8]. A local obstruction precludes a code from encoding
the intersections of open sets that form a good cover, and convex open sets always form a
good cover of their union. Accordingly, codes without an obstruction are called locally good.
If such a good cover exists (for instance, from a collection of convex open sets), then the code
is a good-cover code. Thus, we have

\scrC is convex \Rightarrow \scrC is a good-cover code \Rightarrow \scrC is locally good.
The converse of the first implication is false; this result is nontrivial, with a counterexample
requiring at least five neurons [17]. The second implication is the starting point of our work.
We prove that the implication is in fact an equivalence: every locally good code is a good-
cover code (Theorem 3.13). We also prove that the good-cover decision problem is undecidable
(Theorem 4.3).

Next, we discover a stronger obstruction to convexity, which is possessed by fewer codes
than the prior obstruction (Theorem 5.10). Both obstructions preclude a code from being
convex, and are defined in terms of a code's simplicial complex, but in the new obstruction, the
link of ``missing"" codewords must be ``collapsible"" (which implies ``contractible,"" the condition
in the original obstruction). We call codes without the new obstruction locally great, and
examine the corresponding decision problem. We prove that the locally great decidability
problem is decidable, and, in fact, NP-hard (Theorem 5.18).

Thus, our results refine the implications we saw earlier, as follows:
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\scrC is convex \Rightarrow \scrC is locally great \Rightarrow \scrC is a good-cover code \leftrightarrow \scrC is locally good.
(NP-hard problem) (undecidable)

Finally, we add another implication to the end of those listed above, by noting that every
locally good code can be realized by connected open sets, but not vice versa (Proposition 2.18).
Taken together, our results resolve fundamental questions in the theory of convex neural codes.

The outline of our work is as follows. Section 2 provides background on neural codes, local
obstructions, and criteria for convexity. In sections 3--5, we prove the results listed above, using
classical tools from topology and combinatorics. Finally, our discussion in section 6 lists open
questions arising from our work.

2. Background. Here we introduce notation as well as basic definitions in the theory of
neural codes.

We define [n] := \{ 1, 2, . . . , n\} . We will reserve lowercase Greek letters (e.g., \sigma and \tau ) to
denote subsets of [n] (for some n). Such a subset usually refers to a codeword in a neural code
(Definition 2.1) or a face in a simplicial complex (Definition 2.5). For shorthand, we will omit
the braces and commas; e.g., if \tau = \{ 1, 2, 3\} and \sigma = \{ 2, 3, 4\} , we write \tau = 123, \sigma = 234, and
\tau \cap \sigma = 23.

2.1. Codes, simplicial complexes, and the nerve theorem. Given a collection \scrU =
\{ U1, U2, . . . , Un\} of sets (place fields) in some stimulus space X \subseteq \BbbR d and some \tau \subseteq [n],
let U\tau :=

\bigcap 
i\in \tau Ui, where U\emptyset := X.

Definition 2.1.
(1) A neural code \scrC on n neurons is a subset of 2[n], and each \sigma \in \scrC is a codeword. Any

codeword that is maximal in \scrC with respect to set inclusion is a maximal codeword.
(2) A code \scrC is realized by a collection of sets \scrU = \{ U1, U2, . . . , Un\} in a stimulus space

X \subseteq \BbbR d if

(2.1) \sigma \in \scrC \Leftarrow \Rightarrow U\sigma \setminus 
\bigcup 
j /\in \sigma 

Uj \not = \emptyset .

Conversely, given a collection of sets \scrU , let \scrC (\scrU ) denote the unique code realized by \scrU ,
via (2.1).

Remark 2.2. A neural code is often referred to as a hypergraph in the literature. Also,
given a collection of subsets U1, U2, . . . , Un \subseteq X, the neural code that is realized by these
subsets can be defined as the collection of sets U(x) = \{ i \in [n] | x \in Ui\} , where x varies
over X.

Every neural code can be realized by open sets [5] and by convex sets [6]. We are in-
terested, however, in realizing neural codes by sets that are both open and convex. This is
because (biological) place fields are approximately convex and have positive measure, which
are properties captured by convex open sets.

Definition 2.3. A neural code \scrC is
(1) convex if \scrC can be realized by a collection of convex open sets.
(2) a good-cover code if \scrC can be realized by a collection of contractible open sets \scrU such

that every nonempty intersection of sets in \scrU is also contractible. Such a \scrU is called
a good cover.
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(3) connected if \scrC can be realized by a collection of connected open sets.

Example 2.4. We revisit the code \scrC = \{ 123, 234, 12, 23, 13, 24, 34, 1, 2, 3, 4, \emptyset \} from the in-
troduction, where we saw that \scrC is convex. Hence, \scrC is a good-cover code and also a connected
code.

Connected codes were classified recently by Mulas and Tran (not every code is con-
nected) [19]. Good-cover codes are connected, but not vice versa (see Proposition 2.18 later
in this section). Convex codes on up to four neurons have been classified [4]. This classifica-
tion was enabled by analyzing codes according to the simplicial complex they generate (see
Definition 2.8). We define simplicial complexes now.

Definition 2.5. An abstract simplicial complex \Delta on [n] is a subset of 2[n] that is closed
under taking subsets. Each \sigma \in \Delta is a face of \Delta . The facets of \Delta are the faces that are
maximal with respect to inclusion. The dimension of a face \sigma is | \sigma |  - 1, and the dimension of
a simplicial complex \Delta , denoted by dim\Delta , is the maximum dimension of the faces of \Delta .

Every simplicial complex \Delta can be realized geometrically in a Euclidean space of suffi-
ciently high dimension, and we let | \Delta | denote such a geometric realization (which is unique up
to homeomorphism). Note that the dimension of a simplicial complex matches the dimension
of its realization: dim\Delta = dim | \Delta | .

Definition 2.6. For a face \sigma of a simplicial complex \Delta , the restriction of \Delta to \sigma is the
simplicial complex

\Delta | \sigma := \{ \tau \in \Delta | \tau \subseteq \sigma \} .

The link of \sigma in \Delta is the simplicial complex:

Lk\sigma (\Delta ) := \{ \tau \in \Delta | \sigma \cap \tau = \emptyset and \sigma \cup \tau \in \Delta \} .

Links are usually written as Lk\Delta (\sigma ), instead of Lk\sigma (\Delta ), but, following [4], we prefer to
have \sigma in the subscript, because we often consider the link in several simplicial complexes.
Note that \sigma \cup \tau \in \Delta is the same as saying that \sigma \ast \tau \subseteq | \Delta | , where \ast is the topological join.

Definition 2.7. Let \Delta be a simplicial complex on [n]. The cone over \Delta on a new vertex v
is the following simplicial complex on [n] \.\cup \{ v\} :

conev(\Delta ) := \{ \sigma \cup \{ v\} | \sigma \in \Delta \} \cup \Delta .

By construction, Lkv(conev(\Delta )) = \Delta . We will use this fact throughout our work.

Definition 2.8. For a code \scrC on n neurons, the simplicial complex of \scrC , denoted by \Delta (\scrC ),
is the smallest simplicial complex on [n] that contains \scrC .

Note that for \scrC = \scrC (\scrU ), we have \sigma \in \Delta (\scrC ) if and only if U\sigma \not = \emptyset (cf. (2.1)). Also, the
facets of \Delta (\scrC ) are the maximal codewords of \scrC .

Example 2.9. The code \scrC = \{ 12, 23, 1, 2, 3, \emptyset \} is convex and realized here:

U1

U2

U3
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The simplicial complex of the code, \Delta (\scrC ), is realized here:

1

2

3
12 23

A related notion to \Delta (\scrC ) is the nerve of a cover, which we define now.

Definition 2.10. Given a collection of sets \scrU = \{ U1, U2, . . . , Un\} , the nerve of \scrU , denoted
by \scrN (\scrU ), is the simplicial complex on [n] defined by

\sigma \in \scrN (\scrU ) \Leftarrow \Rightarrow U\sigma \not = \emptyset .

Remark 2.11. The relationship between the nerve of a cover and the simplicial complex
of the corresponding code is as follows: \scrN (\scrU ) = \Delta (\scrC (\scrU )).

Next, we recall the classical result called the nerve theorem or nerve lemma [29]. The
version we state is [10, Corollary 4G.3].

Proposition 2.12 (nerve theorem). If \scrU is a finite collection of nonempty and contractible
open sets that cover a paracompact space S such that every intersection of sets is either empty
or contractible, then S is homotopy equivalent to \scrN (\scrU ).

Metric spaces are paracompact [23], so good-cover realizations of codes satisfy the hypothe-
ses of Proposition 2.12. Thus, if we determine that a code \scrC does not satisfy the conclusion
of this proposition, then (because convex codes are good-cover codes) we conclude that \scrC is
not convex. We turn to this topic now.

2.2. Local obstructions and criteria for convexity. One way to detect nonconvexity of a
neural code is to find what is known as a local obstruction.

Definition 2.13. Given a code \scrC that is realized by open sets \scrU , a local obstruction is a pair
(\sigma , \tau ) for which

U\sigma \subseteq 
\bigcup 
i\in \tau 

Ui ,

where \tau \not = \emptyset and Lk\sigma (\Delta (\scrC )| \sigma \cup \tau ) is not contractible. A code \scrC with no local obstructions is
locally good.

Definition 2.13 does not depend on the choice of open sets \scrU [4].
The name ``local obstruction"" is due to the following result, which states that if a code

has a local obstruction, then it is not a good-cover code, and therefore not convex.

Proposition 2.14 (Giusti and Itskov [8]; Curto et al. [4]).

(2.2) \scrC is convex \Rightarrow \scrC is a good-cover code \Rightarrow \scrC is locally good.

A natural question is: Do the converses of the implications in (2.2) hold? For the second
implication, the converse is true; we will prove this in the next section (Theorem 3.13).

As for the first implication, the converse is, in general, false (but true for codes in which all
codewords have size at most two [15] and codes on up to four neurons [4]). The first counterex-
ample, which is a code on five neurons, was found by Lienkaemper, Shiu, and Woodstock [17].
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Proposition 2.15 (counterexample code [17]). The following neural code is a good-cover
code, but nonconvex: \scrC = \{ 2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4, \emptyset \} .

This code, it turns out, is realizable by closed convex sets instead of open convex sets [3].
Returning to the topic of detecting local obstructions, the next result gives a way to do

so that is more efficient than simply applying the definition (Definition 2.13). As it turns out,
we need to check only the links of faces that are intersections of facets of \Delta (\scrC ).

Definition 2.16. The set of mandatory codewords of a simplicial complex \Delta is \scrM (\Delta ) :=
\{ \sigma \in \Delta | Lk\sigma (\Delta ) is not contractible\} , and the set of nonmandatory codewords of \Delta is \Delta \setminus 
\scrM (\Delta ). The set of mandatory codewords of a code \scrC is \scrM (\Delta (\scrC )).

Proposition 2.17 (Curto et al. [4]). A code \scrC is locally good if and only if it contains
all its mandatory codewords (i.e., \scrM (\Delta (\scrC )) \subseteq \scrC ). Also, every mandatory codeword is an
intersection of maximal codewords.

As a corollary, max-intersection complete codes, those that are closed under-taking inter-
sections of maximal codewords, are locally good. In fact, these codes are convex [3]. Note
that the (nonconvex) counterexample code \scrC from Proposition 2.15 is not max-intersection
complete, because the intersection of maximal codewords 123\cap 134\cap 145 = 1 is missing from \scrC .

Another result pertaining to convexity, due to Cruz et al. [3], is as follows: for codes with
the same simplicial complex, convexity is a monotone property with respect to inclusion. That
is, if \scrC is convex, and \scrC \subseteq \scrC \prime where \Delta (\scrC ) = \Delta (\scrC \prime ), then \scrC \prime is convex.

We now show that good-cover codes are realizable by connected open sets, but not vice
versa.

Proposition 2.18. Every good-cover code is connected, but not every connected code is a
good-cover code.

Proof. Contractible sets are connected, so, by definition, good-cover codes are connected.
As for the converse, consider the following code: \scrC = \{ 124, 134, 234, 14, 24, 34, \emptyset \} . The code-
word 4, which is not in \scrC , is a mandatory codeword of \scrC , as Lk\{ 4\} (\Delta (\scrC )) is the following
noncontractible simplicial complex:

1

2 3

Thus, by definition, \scrC is not locally good, and so, by Proposition 2.17, is not a good-cover
code. We complete the proof by displaying the following realization of \scrC by connected, open
sets in \BbbR 2:

124

34

1424

234 134

More precisely, for i = 1, 2, 3, 4, consider (the closures of) the regions above that are labeled
by some \sigma for which i \in \sigma . Now let Ui be the interior of the union of all such regions.
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We end this section by noting that the presence or absence of the empty set in a code
\scrC does not affect whether \scrC is convex. We use this fact later in this work, in the proof of
Theorem 3.13.

Remark 2.19 (codes and the empty set). A code \scrC is convex (respectively, a good-cover
code) if and only if \scrC \cup \{ \emptyset \} is convex (respectively, a good-cover code) [4]. Indeed, if \emptyset /\in \scrC 
and \scrC is realized by convex open sets (respectively, a good cover) \scrU , then \scrC \cup \{ \emptyset \} is realized
by \{ U \cap B | U \in \scrU \} , where B is an open ball that contains a point from each region cut out
by \scrU . Conversely, if \emptyset \in \scrC and \scrC \cup \{ \emptyset \} is realized by \scrU (with respect to some stimulus space),
then the code \scrC is realized by \scrU with respect to the stimulus space X = \cup U\in \scrU U .

3. Locally good codes are good-cover codes. In this section we will prove that being
locally good is equivalent to being a good-cover code (Theorem 3.13). We accomplish this
by constructing a good-cover realization of any locally good code. Our construction has two
steps. We first realize any code via (not necessarily open) subsets of a geometric realization
of its simplicial complex (Proposition 3.2), and then do a ``reverse deformation retract"" to
obtain a realization by open sets (Proposition 3.10).

3.1. Code-complex realizations. The idea behind the following construction, which re-
alizes any code \scrC by subsets of | \Delta (\scrC )| , is to realize codewords in \scrC by the corresponding
faces of | \Delta (\scrC )| . Thus, we will simply delete faces corresponding to codewords that are not in
\scrC . Accordingly, for any simplicial complex \Delta and any \sigma \in \Delta , let int(\sigma ) denote the relative
interior of the realization of the face \sigma within | \Delta | (if v is a vertex, then int(v) = \{ v\} ). See the
left-hand side of Figure 1. It follows that | \Delta | = \.\cup \emptyset \not =\sigma \in \Delta int(\sigma ). Thus, | \Delta | is a CW-complex
built from the int(\sigma )'s.

Definition 3.1. Let \scrC be a code on n neurons. For each i \in [n], consider the following
subset of | \Delta (\scrC )| :

Vi :=
\bigcup 

i\in \sigma \in \scrC 
int(\sigma ) .

Then \{ V1, V2, . . . , Vn\} is the code-complex realization of \scrC .

(3) (2)

(1)

(23)

(123)
(12)(13)

R23

R123

R12R13

R3 R2

R1

Figure 1. The correspondence between the face-interiors int(\sigma ) that make up the 2-simplex and the regions
R\sigma that deformation retract to the int(\sigma )'s (see (3.4)). We define the region R12 to contain the face-interior
labeled by (12), and R1 to contain the dashed lines of its boundary and the vertex (1) (so it is closed), which is
why in Proposition 3.10 we must pass from the unions of regions R\sigma to their relative interiors.
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Proposition 3.2. Let \scrC be a code on n neurons. Then the code-complex realization \{ V1, V2,
. . . , Vn\} of \scrC given in Definition 3.1 is a realization of \scrC . Moreover, if \scrC is locally good, then
every nonempty intersection of sets from \{ V1, V2, . . . , Vn\} is contractible.

We postpone the proof of Proposition 3.2 to the end of this subsection.

Remark 3.3. Code-complex realizations (Definition 3.1) are, in general, not simplicial com-
plexes or even CW-complexes. See Examples 3.5 and 3.6, where the sets Vi and their unions
are not even closed.

Remark 3.4. Code-complex realizations (Definition 3.1) are somewhat similar to prior
constructions that also specify regions that correspond to codewords [3, 4] or intersection
patterns [24].

Example 3.5. Consider the (locally good) code \scrC = \{ 123, 12, 23, 1, 2, \emptyset \} . The code-complex
realization of \scrC given in Definition 3.1 is depicted here, along with | \Delta (\scrC )| :

(1)

(12)
(123)

V1

(23)

(12)

(2)
(123)

V2

(23)

(123)

V3

(1)

(2)(3)

(12)(13)

(23)

(123)

| \Delta (\scrC )| 

Here, black vertices, solid lines, and shaded faces indicate face-interiors that are present in Vi;
while unshaded vertices and dotted lines indicate absent face-interiors.

Example 3.6. For the (not locally good) code \scrC = \{ 13, 23, 1, \emptyset \} , the code-complex realiza-
tion is depicted here.

(1)

(13)

V1

(23)

V2

(23)
(13)

V3

Comparing Examples 3.5 and 3.6, note that, consistent with Proposition 3.2, the sets Vi

in the first example are contractible and have contractible intersections, but not in the second
example (V3 is not connected).

The proof of Proposition 3.2 relies on the following lemma, which may be of independent
interest.

Lemma 3.7. Let \Sigma be a simplicial complex, and let \Omega be a subset of the nonmandatory
codewords of \Sigma . Then, if \Sigma is contractible, then so is the code-complex realization of the code
\Sigma \setminus \Omega .

We prove Lemma 3.7 in Appendix A.

Proof of Proposition 3.2. By construction, we have

n\bigcup 
i=1

Vi =
\cdot \bigcup 

\emptyset \not =\sigma \in \scrC 

int(\sigma ) ,
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and the subset int(\sigma ) realizes the codeword \sigma . If \emptyset /\in \scrC , define the stimulus space X = \cup n
i=1Vi;

otherwise, define X to be the ambient Euclidean space. Thus, \{ V1, V2, . . . , Vn\} realizes \scrC with
respect to X.

Now assume that \scrC is locally good. We must show that every intersection of the Vi's is
empty or contractible. To this end, let \emptyset \not = \tau \subseteq [n], and assume that V\tau is nonempty. Note
that

V\tau =
\bigcup 

\tau \subseteq \sigma \in \scrC 
int(\sigma ) .

We consider two cases. If \tau \in \scrC , then V\tau = int(\tau ) \cup 
\bigcup 

\tau \subsetneq \sigma \in \scrC int(\sigma ). Now consider the
deformation retract of | \Delta n| to the face \tau , arising from orthogonal projection to that face. It is
straightforward to check that this restricts to a deformation retraction of V\tau to int(\tau ), which
is contractible. Thus, V\tau is contractible.

Consider the remaining case, when \tau /\in \scrC . Then V\tau =
\bigcup 

\tau \subsetneq \sigma \in \scrC int(\sigma ). We will show that V\tau 

is contractible by first proving that V\tau is homotopy equivalent to the code-complex realization
of the following link of a code [3, Definition 2.3] or, for short, ``code-link"":

Lk\tau (\scrC ) := \{ \eta \subseteq [n] | \tau \cap \eta = \emptyset and \tau \cup \eta \in \scrC \} ,(3.1)

and then proving that this code-complex realization, which we denote by \scrL , is contractible.
To see that V\tau \simeq \scrL , we compute

V\tau =
\bigcup 

\tau \subsetneq \sigma \in \scrC 
int(\sigma ) =

\cdot \bigcup 
\emptyset \not =\eta \in \mathrm{L}\mathrm{k}\tau (\scrC )

int(\tau \.\cup \eta )(3.2)

and

\scrL =

\cdot \bigcup 
\emptyset \not =\eta \in \mathrm{L}\mathrm{k}\tau (\scrC )

int(\eta ) .(3.3)

It is straightforward to see, from (3.2) and (3.3), that V\tau deformation retracts to a copy of \scrL .
To see that \scrL is contractible, we will appeal to Lemma 3.7 (where \Sigma = Lk\tau (\Delta (\scrC )) and

\Sigma \setminus \Omega is the code-link in (3.1)). To apply Lemma 3.7, we must show that every \sigma in Lk\tau (\Delta (\scrC ))
but not in the code-link (3.1) is not a mandatory codeword of Lk\tau (\Delta (\scrC )). To this end, note
that such a \sigma satisfies \sigma \cap \tau = \emptyset and \sigma \cup \tau \in \Delta (\scrC ) \setminus \scrC . Thus, because \scrC is locally good, the
link Lk\sigma \cup \tau (\Delta (\scrC )) = Lk\sigma (Lk\tau (\Delta (\scrC ))) is contractible, and thus \sigma is not a mandatory codeword
of Lk\tau (\Delta (\scrC )).

We now apply Lemma 3.7: the link Lk\tau (\Delta (\scrC )) is contractible (because \scrC is locally good
and \tau /\in \scrC ), so \scrL also is contractible. Hence, V\tau is contractible.

Remark 3.8. In the proof of Proposition 3.2, the only place where we use the fact that
\scrC is locally good, is at the end, when we show that \scrL is contractible. Nonetheless, the part
of Proposition 3.2 pertaining to locally good codes \scrC cannot be generalized beyond locally
good codes, as otherwise a non--locally good code would have a good-cover realization (via
the proof of Proposition 3.10).
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3.2. Main result. Our next step is to modify, via a ``reverse deformation retract,"" the
realization from Proposition 3.2 so that the sets are open (Proposition 3.10).

To this end, for any n, let \Delta n := 2[n] be the complete simplicial complex on [n], and
consider an embedding of | \Delta n| in \BbbR n - 1. The facet-defining hyperplanes of | \Delta n| form a hyper-
plane arrangement whose open chambers (in the complement of the hyperplanes) correspond
to nonempty subsets \sigma of [n] (see Figure 1). Let C\sigma denote the closure of the chamber that
corresponds to int(\sigma ). Choose an ordering of the nonempty faces of \Delta n so that they are
nondecreasing in dimension: 0 = dim\sigma 1 \leq dim\sigma 2 \leq \cdot \cdot \cdot \leq dim\sigma 2n - 1. We define recursively
the following sets (see the right-hand side of Figure 1):

R\sigma k
:= C\sigma k

\setminus 
\Bigl( 
\cup k - 1
j=1C\sigma j

\Bigr) 
.(3.4)

We claim that the order of the \sigma i's does not matter. Indeed, if dim\sigma i = dim\sigma j (with i \not = j),
then the intersection C\sigma i\cap C\sigma j is the (possibly empty) face \sigma i\cap \sigma j of | \Delta n| . This face \sigma i\cap \sigma j = \sigma l
is indexed by some l < i, j, and so this face, regardless of whether i < j or j < i, is in neither
R\sigma i nor R\sigma j .

We make the following several observations. First, the R\sigma 's are disjoint, and each R\sigma 

is convex and full-dimensional. Also, R\sigma deformation retracts to int(\sigma ) via a deformation
retract of \BbbR n - 1 to | \Delta n| . Finally, the interior of R\sigma is the open chamber C\sigma of the hyperplane
arrangement of | \Delta n| 's facet-defining hyperplanes.

In analogy to how we built the sets Vi from the sets int(\sigma ) (in Definition 3.1), we now
build sets Wi from the sets R\sigma (which, we noted, deformation retract to the sets int(\sigma )).

Proposition 3.9. Let \scrC be a code on n neurons. For each i \in [n], consider the following
subset of \BbbR n - 1:

Wi :=
\bigcup 

i\in \sigma \in \scrC 
R\sigma ,(3.5)

where R\sigma is as in (3.4). Then \{ W1,W2, . . . ,Wn\} is a realization of \scrC \setminus \{ \emptyset \} .
Proof. By construction, we have

n\bigcup 
i=1

Wi =

\cdot \bigcup 
\emptyset \not =\sigma \in \scrC 

R\sigma ,

and the subset R\sigma realizes the codeword \sigma . Define the stimulus space X = \cup n
i=1Wi. Then the

collection \{ W1,W2, . . . ,Wn\} realizes \scrC \setminus \{ \emptyset \} with respect to X.

The sets Wi in Proposition 3.9 are, in general, not open sets (see Figure 1), but they are
unions of full-dimensional convex sets, so we now consider the interiors.

Proposition 3.10. Let \scrC be a code on n neurons. For each i \in [n], consider the following
subset of \BbbR n - 1:

Ui := int(Wi) ,

where Wi is as in (3.5). Then \{ U1, U2, . . . , Un\} is a realization of \scrC . Moreover, if \scrC is locally
good, then \{ U1, U2, . . . , Un\} is a good-cover realization of \scrC \setminus \{ \emptyset \} .
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Before proving Proposition 3.10, we give an example of the realization given in the propo-
sition.

Example 3.11. We return to the locally good code \scrC = \{ 123, 12, 23, 1, 2, \emptyset \} from Ex-
ample 3.5. The good-cover realization \{ U1, U2, U3\} of \scrC from Proposition 3.10, along with
U1 \cup U2 \cup U3, is depicted here:

U1

U2 U3 U1 \cup U2 \cup U3

R123

R12

R1

R23

R123

R12

R2 R23

R123

R23

R123

R12

R2

R1

Proof of Proposition 3.10. By construction, the Ui's are open. So, we must show that
(1) the Ui's realize \scrC \setminus \{ \emptyset \} , that is, \scrC (\{ Ui\} ) = \scrC \setminus \{ \emptyset \} , and (2) if \scrC is locally good, then
\{ U1, U2, . . . , Un\} is a good cover.

Proof of (1). We begin by proving the containment \scrC (\{ Ui\} ) \supseteq \scrC \setminus \{ \emptyset \} , where we define
the stimulus space to be X = \cup n

i=1Ui (so, \emptyset /\in \scrC (\{ Ui\} )). Take \emptyset \not = \sigma \in \scrC . We must show that
\sigma \in \scrC (\{ Ui\} ). Let x be in the interior of R\sigma . Then, by construction, x \in U\sigma \setminus 

\bigl( 
\cup j /\in \sigma Uj

\bigr) 
, so

\sigma \in \scrC (\{ Ui\} ).
To prove the remaining containment, \scrC (\{ Ui\} ) \subseteq \scrC \setminus \{ \emptyset \} , let \sigma \in \scrC (\{ Ui\} ). As explained

above, \sigma \not = \emptyset . Let x \in U\sigma \setminus 
\bigl( 
\cup j /\in \sigma Uj

\bigr) 
. We consider two cases. If x is not on a facet-defining

hyperplane of | \Delta n| , then x is in the interior of some R\tau . It is straightforward to check that
\tau = \sigma , so int(R\sigma ) \subseteq U\sigma , and thus \sigma \in \scrC .

In the second case, x is on exactly m facet-defining hyperplanes of | \Delta n| (for some m \geq 1).
Crossing exactly one such hyperplane means going from some region R\alpha to some region R\alpha \cup \{ i\} 
(for some i /\in \alpha ), or vice versa. Thus, a small neighborhood B of x intersects exactly 2m regions
R\tau : precisely those with

\eta \subseteq \tau \subseteq \widetilde \eta ,(3.6)

for some \eta \subseteq \widetilde \eta \subseteq [n] with | \eta | +m = | \widetilde \eta | .
Recall that x is in the open set U\sigma , so B \subseteq U\sigma , and thus the interiors of the 2m regions R\tau 

are contained in U\sigma . So, all sets \tau given in (3.6) are in the code \scrC . Thus, to show that \sigma \in \scrC ,
it suffices to show that \eta = \sigma . The containment \eta \supseteq \sigma follows from the fact that int(R\eta ) \subseteq U\sigma 

(as explained above). We prove \eta \subseteq \sigma by contradiction. Assume that there exists k \in \eta \setminus \sigma .
Then we have

x \in B \subseteq \cup \eta \subseteq \tau \subseteq \widetilde \eta R\tau \subseteq U\eta \subseteq Uk .

Thus, x \in Uk, where k /\in \sigma , which contradicts the choice of x. So, \eta \subseteq \sigma holds.
Proof of (2). Assume that \scrC is locally good. Let \emptyset \not = \tau \subseteq [n], and assume that U\tau is

nonempty. We must show that U\tau is contractible. By Proposition 3.2, V\tau is contractible, so
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it is enough to show that U\tau \simeq V\tau . We will prove this by showing that the set Z\tau := U\tau 
\bigcup 
V\tau 

deformation retracts to V\tau and also weak deformation retracts [10] to U\tau . It is straightforward
to check that U\tau = int(W\tau ), and W\tau is a (full-dimensional) set that deformation retracts to
V\tau . Thus, Z\tau = U\tau 

\bigcup 
V\tau deformation retracts to V\tau . Finally, we obtain a weak deformation

retract of Z\tau to U\tau via the following homotopy: we simultaneously translate each facet-defining
hyperplane of the simplex | \Delta n| a small distance away from the simplex, so that the subset of
Z\tau that is ``swept up"" is pushed into U\tau .

It is natural to ask whether a closed-set version of Proposition 3.10 holds.

Question 3.12. Is every locally good code a closed-good-cover code?

We could try to resolve this question by ``closing"" our open-good-cover realizations; we
ask: For a locally good code \scrC , is \{ Ui\} a closed-good-cover realization of \scrC , where \{ Ui\} is as
in Proposition 3.10? However, this is not true. Indeed, it is easy to check that for the locally
good code \scrC = \{ 1, 12, 13\} , the open realization \{ U1, U2, U3\} , when we take closures, yields a
code \scrC (\{ U1, U2, U3\} ) with the ``extra"" codeword 123.

Theorem 3.13. A code is locally good if and only if it is a good-cover code.

Proof. The backward direction is in Proposition 2.14. The forward direction follows
from Proposition 3.10 and the fact that if \scrC \cup \{ \emptyset \} is a good-cover code, then so is \scrC (Re-
mark 2.19).

Finally, note that the good-cover realizations from Proposition 3.10 are embedded in an
(n - 1)-dimensional Euclidean space, where n is the number of neurons. The following result
shows that this embedding dimension cannot, in general, be improved.

Proposition 3.14. The code on n neurons comprising all proper subsets of [n],

\scrC n := 2[n] \setminus \{ 123 . . . n\} ,

is locally good, and cannot be realized by a good cover in \BbbR n - 2.

Proof. The code \scrC n is locally good, as it is a simplicial complex and hence contains all
its mandatory codewords. Next, suppose for contradiction that \scrU = \{ U1, U2, . . . , Un\} forms
a good-cover realization of \scrC n in \BbbR n - 2. By the nerve lemma (Proposition 2.12), the union
\cup n
i=1Ui is homotopy equivalent to the nerve of \scrU , which is the boundary of the (n - 1)-simplex.

However, no subset of \BbbR n - 2 is homotopy equivalent to an (n - 2)-sphere. We have reached a
contradiction.

4. Undecidability of the good-cover decision problem. Having shown that being lo-
cally good is equivalent to being a good-cover code (Theorem 3.13), we now prove that the
corresponding decision problem is undecidable (Theorem 4.3). The proof hinges on the unde-
cidability of determining whether a homology ball is contractible (Lemma 4.2) [25].

The motivation for analyzing this decision problem is that, given a code \scrC (arising perhaps
from neuroscience data), we would like to determine (quickly) whether \scrC is convex. One way
to show that \scrC is nonconvex is to determine that \scrC is not locally good. We show, however,
that this problem is undecidable.

We say that a code \scrC is k-sparse if its simplicial complex \Delta (\scrC ) has dimension at most
k  - 1.
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Definition 4.1. A code \scrC is k-sparse if | \sigma | \leq k for all \sigma \in \scrC .

Lemma 4.2 (Tancer [25]). The problem of deciding whether a given 4-dimensional simpli-
cial complex is contractible is undecidable.

Theorem 4.3 (undecidability of the good-cover decision problem). The problem of decid-
ing whether a 5-sparse code is locally good (or, equivalently, has a good-cover realization) is
undecidable.

Proof. Given any 4-dimensional simplicial complex \Delta , consider the cone over \Delta on a new
vertex v. This cone is itself a simplicial complex, which we denote by \Delta \prime . Let \scrC denote the
neural code \Delta \prime \setminus \{ v\} , which is 5-sparse. Note that \Delta (\scrC ) = \Delta \prime , so the only codeword in \Delta (\scrC )
that is missing from \scrC is v. So, by Proposition 2.17, the code \scrC is locally good if and only if
Lkv(\Delta 

\prime ) = \Delta is contractible. Thus, any algorithm that could decide whether \scrC is locally good
would also decide whether \Delta is contractible, which is impossible by Lemma 4.2.

4.1. Decidability for 3-sparse and 4-sparse codes. Can the condition of 5-sparsity in
Theorem 4.3 can be extended to 4-sparsity or even 3-sparsity? For 3-sparsity, the answer is
``no.""

Proposition 4.4. The problem of determining whether a 3-sparse code is locally good (or,
equivalently, has a good-cover realization) is decidable.

Proof. It is straightforward to write an algorithm that, for a given code \scrC , enumerates
the nonempty intersections of maximal codewords. By Proposition 2.17, \scrC is locally good if
and only if the links of these intersections are all contractible. Hence, we are interested in the
decision problem for determining whether these links are contractible. When \scrC is 3-sparse,
these links are 2-sparse, i.e., (undirected) graphs. Contractible graphs are precisely trees
(connected graphs without cycles), and the problem of determining whether a graph is a tree
is decidable.

As for extending Theorem 4.3 to 4-sparsity, this problem is open. This is because it is
unknown whether the dimension in Lemma 4.2 can be lowered from 4 to 3 [25, Appendix A].

4.2. Relation to the convexity decision problem. For 2-sparse codes, being convex is
equivalent to being locally good [15]. So, by Proposition 4.4, the convexity decision problem
for these codes is decidable.

For codes without restriction on the sparsity, we revisit, from the proof of Theorem 4.3,
codes of the form \scrC = \Delta \prime \setminus \{ v\} , where \Delta \prime is a cone over a simplicial complex \Delta on a new
vertex v. Consider the case when \Delta is contractible. Does it follow that \scrC is convex? If it were,
then by an argument analogous to the proof of Theorem 4.3, the convexity decision problem
would be undecidable. However, we will see in the next section that there exist such codes \scrC 
that are nonconvex (Example 5.14). Indeed, the convexity decision problem is unresolved, so
we pose it here.

Question 4.5. Is the problem of determining whether a code is convex, decidable?

In the next section, we will introduce a superset of all convex codes, the ``locally great""
codes, and show that the corresponding decision problem is decidable (Theorem 5.18).
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5. A new, stronger local obstruction to convexity. Recall that a code \scrC has no local
obstructions if and only if it contains all its mandatory codewords (Proposition 2.17), and
these mandatory codewords are precisely the faces of the simplicial complex \Delta (\scrC ) whose
link is noncontractible. We prove in this section that by replacing ``noncontractible"" by
``noncollapsible"" (Definition 5.1) we obtain a stronger type of local obstruction to convexity
(Theorem 5.10).

This result yields a new family of codes that, like the earlier counterexample code (Propo-
sition 2.15), are locally good, but not convex. This new family comprises codes of the form
\scrC = \widetilde \Delta \setminus \{ v\} , where \widetilde \Delta is a cone, on a new vertex v, over a contractible but noncollapsible sim-
plicial complex \Delta (see Example 5.14). Such a code \scrC (as we saw in the proof of Theorem 4.3)
is missing only one codeword (namely, v) from its simplicial complex (because \Delta (\scrC ) = \widetilde \Delta ).
We will use this several times in this section.

5.1. Background on collapses. First, we make note of a somewhat overloaded definition
in the literature. The notion of a collapse of a simplicial complex was introduced by Whitehead
in 1938 [30]. The more general concept of d-collapse was introduced by Wegner in 1975 [28].

Definition 5.1. Let \Delta be a simplicial complex, and let \scrM be the set of its facets.
(1) For any face \sigma of \Delta such that there is a unique \tau \in \scrM for which \sigma \subseteq \tau , we define

\Delta \prime = \Delta \setminus \{ \nu \in \Delta | \sigma \subseteq \nu \} ,

and say that \Delta \prime is an elementary d-collapse of \Delta induced by \sigma (or (\sigma , \tau )).
This elementary d-collapse is denoted by \Delta \rightarrow \Delta \prime . (Here d refers to the constraint
dim\sigma \leq d - 1, but in this work we will let d be arbitrarily high when we use the term
``d-collapse."") A sequence of elementary d-collapses

\Delta \rightarrow \Delta 1 \rightarrow \Delta 2 \rightarrow \cdot \cdot \cdot \rightarrow \Delta n

is a d-collapse of \Delta to \Delta n.
(2) An elementary collapse is an elementary d-collapse induced by a face \sigma that is not a

facet (i.e., \sigma \subsetneq \tau ). A sequence of elementary collapses starting with \Delta and ending with
\Delta \prime is a collapse of \Delta to \Delta \prime . Finally, a simplicial complex is collapsible if it collapses
to a point (via some sequence).

Remark 5.2. Following [25], our Definition 5.1(2) characterizes ``collapsible"" in terms of
elementary collapses induced by pairs (\sigma , \tau ) with dim\sigma < dim \tau . An equivalent definition, also
used in the literature [1, 2], is via elementary collapses under a stronger condition: dim\sigma =
dim \tau  - 1. For completeness, we prove in Appendix B that these two definitions of collapsible
are equivalent (Proposition B.2).

Example 5.3 (a d-collapse). The following is an elementary d-collapse defined by \sigma = \tau =
123:

1

2
3 4

1

2
3 4

Example 5.4 (a collapse). The following is a collapse to a point:
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1

2
3 4

2
3 4 3 4 4

This collapse arises from the elementary collapses induced by, respectively, (\sigma , \tau ) = (1, 123),
(\sigma , \tau ) = (2, 23), and (\sigma , \tau ) = (3, 34).

Comparing Examples 5.3 and 5.4, note that the homotopy type was not preserved through-
out the d-collapse, but was preserved throughout the collapse. This is explained in the next
two results, the first of which is well known (see, e.g., [2, Chap. 1.2] or [1]).

Lemma 5.5. Elementary collapses preserve homotopy type. Thus, collapsible implies con-
tractible.

However, not every contractible simplicial complex is collapsible. One example is any
triangulation of the 2-dimensional topological space known as Bing's house with two rooms [22,
Ex. 1.6.1]. Another example comes from the dunce hat [32].

Lemma 5.5 extends as follows.

Lemma 5.6. Let \Delta be a contractible simplicial complex, and let \Delta \rightarrow \Delta \prime be an elementary
d-collapse induced by a face \sigma . Assume that \Delta \prime contains a nonempty face. Then \Delta \prime is
contractible if and only if \sigma is not a facet (i.e., \Delta \rightarrow \Delta \prime is an elementary collapse).

Proof. The backward direction is immediate from Lemma 5.5. We prove the contrapositive
of the forward direction. Suppose that \sigma is a facet of \Delta . Then | \Delta | = [\sigma ] \cup | \Delta \prime | , where [\sigma ]
denotes the the topological realization of \sigma as a facet of | \Delta | . With an eye toward using
the Mayer--Vietoris sequence, we note that the intersection [\sigma ] \cap | \Delta \prime | is the boundary of the
simplex [\sigma ] and thus is a sphere and so has a nonvanishing homology group. Applying the
Mayer--Vietoris sequence for homology to | \Delta | = [\sigma ]\cup | \Delta \prime | , and using the hypothesis that \Delta is
contractible, we conclude that | \Delta \prime | has a nonvanishing homology group, and therefore is not
contractible.

Finally, we state the following result of Wegner [28]; see also Tancer's description in [24,
sect. 2].

Lemma 5.7 (Wegner [28]). Let \scrW = \{ W1,W2, . . . ,Wn\} be a collection of nonempty convex
(not necessarily open) sets in \BbbR m. Let \Lambda be the nerve of \scrW . Then there exists an open halfspace
H in \BbbR m such that, letting \Lambda \prime denote the nerve of the collection \{ W1\cap H,W2\cap H, . . . ,Wn\cap H\} ,
the following is an elementary d-collapse: \Lambda \rightarrow \Lambda \prime .

Informally speaking, Wegner proved Lemma 5.7 by sweeping a hyperplane from infinity
across \BbbR m, deleting everything in its path, until an intersection region corresponding to a facet
\tau of \Lambda has been removed. This yields the elementary d-collapse \Lambda \rightarrow \Lambda \prime induced by some face
contained in \tau .

Remark 5.8. Recent work of Itskov, Kunin, and Rosen is similar in spirit to ours: they
show that the collapsibility of a certain simplicial complex associated to a code (the ``polar
complex"") ensures that the code avoids certain obstructions to being a certain type of convex
code (namely, a code arising from a ``nondegenerate"" hyperplane arrangement) [12, sect. 6.5].



16 AARON CHEN, FLORIAN FRICK, AND ANNE SHIU

5.2. A key lemma. This subsection contains the key result (Lemma 5.9) that allows us
to establish, via Theorem 5.10, our new local obstruction. Lemma 5.9 states that for an open
cover by convex sets of a set that is itself convex, the corresponding nerve is collapsible. The
original local obstruction (Proposition 2.14) relied on a weaker version of this result, which
states only that such a nerve is contractible. Accordingly, the way we use Lemma 5.9 to prove
Theorem 5.10 is analogous to how the authors of [4, 8] used the ``contractible"" version of the
lemma to establish the original notion of local obstruction.

Lemma 5.9. Let \scrW = \{ W1,W2, . . . ,Wn\} be a collection of convex open sets in \BbbR m such
that their union W1\cup W2\cup \cdot \cdot \cdot \cup Wn is nonempty and convex. Then the nerve of \scrW is collapsible.

Proof. Let \Lambda denote the nerve of \scrW . Let p denote the number of nonempty faces of \Lambda .
Note that p \geq 1, as the union of the Wi's is nonempty. We proceed by induction on p.

Base case: p = 1. Then \Lambda is a point, and thus is collapsible.
Inductive step: p \geq 2. Assume that the lemma is true for all nerves \Lambda with at most p - 1

nonempty faces. First, consider the case when \Lambda has only one facet. Then \Lambda is a simplex, and
every simplex is collapsible.

Now consider the remaining case, when \Lambda has at least two facets. Without loss of gen-
erality, each Wi is nonempty (deleting Wi's that are empty does not affect the union or the
nerve). So, by Lemma 5.7, there exists an open halfspace H such that \Lambda \rightarrow \Lambda \prime is an elementary
d-collapse, where \Lambda \prime is the nerve of \scrV := \{ W1 \cap H,W2 \cap H, . . . ,Wn \cap H\} . We see that \scrV is a
collection of convex open sets whose union, (\cup i\in [n]Wi) \cap H, is convex (because both \cup i\in [n]Wi

and H are convex) and nonempty (indeed, the nerve \Lambda \prime is nonempty, because \Lambda has at least
two facets and so at least one was unaffected by the elementary d-collapse \Lambda \rightarrow \Lambda \prime ). Thus, by
the induction hypothesis, \Lambda \prime is collapsible.

Thus, by definition of collapsible, we need only show that the elementary d-collapse \Lambda \rightarrow \Lambda \prime 

was in fact an elementary collapse. To see this, note that the nerve theorem (Proposition 2.12)
implies that the nerve \Lambda \prime is homotopy equivalent to (\cup i\in [n]Wi) \cap H, which we saw above is
convex (and nonempty) and thus contractible. Hence, by Lemma 5.6, \Lambda \rightarrow \Lambda \prime is an elementary
collapse. This completes the proof.

5.3. Locally great codes. The following result gives a new class of local obstructions.

Theorem 5.10. Let \scrC be a convex code. Then for any \sigma \in \Delta (\scrC ) \setminus \scrC , the link Lk\sigma (\Delta (\scrC )) is
collapsible.

Proof. Let U1, U2, . . . , Un be convex open sets (in some stimulus space X \subseteq \BbbR m) that
realize \scrC . Let \sigma \in \Delta (\scrC ) \setminus \scrC . Then, by definition, \emptyset \not = U\sigma \subseteq \cup i/\in \sigma Ui. Thus, \scrW := \{ Ui \cap U\sigma \} i/\in \sigma 
is a collection of convex open sets such that their union equals U\sigma (and thus this union is
nonempty and convex). So, by Lemma 5.9, the nerve of \scrW is collapsible. It is straightforward
to check that this nerve equals Lk\sigma (\Delta (\scrC )). So, as desired, the link is collapsible.

Definition 5.11. A code \scrC has a local obstruction of the second kind if there exists \sigma \in 
\Delta (\scrC ) \setminus \scrC such that the link Lk\sigma (\Delta (\scrC )) is not collapsible. If \scrC has no local obstructions of the
second kind, \scrC is locally great.

The next result follows from Theorem 5.10 and the fact that collapsible implies contractible
(Lemma 5.5).
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Corollary 5.12. \scrC is convex \Rightarrow \scrC is locally great \Rightarrow \scrC is locally good.

Neither implication in Corollary 5.12 is an equivalence, as we see in the following examples.

Example 5.13 (locally great does not imply convex). The counterexample code from Propo-
sition 2.15 is nonconvex [17], but, we claim, locally great. To verify this, we must check that
for every missing codeword \sigma \in \Delta (\scrC ) \setminus \scrC = \{ 234, 235, 245, 345, 12, 15, 24, 25, 35, 1, 2, 5\} , the
corresponding link Lk\sigma (\Delta (\scrC )) is collapsible. We accomplish this as follows:

\bullet When \sigma \in \{ 234, 235, 245, 345, 12, 15\} , the link is a point and thus collapsible.
\bullet When \sigma \in \{ 24, 25, 35, 1\} , the link is a single edge and thus collapsible (cf. Example 5.4).
\bullet When \sigma \in \{ 2, 5\} , the link is, up to relabeling, the simplicial complex in Example 5.4,
which we showed is collapsible.

Example 5.14 (locally good does not imply locally great). Let \Delta be a triangulation of Bing's
house, so \Delta is a 2-dimensional simplicial complex that is contractible but not collapsible [22,
Ex. 1.6.1]. Let \widetilde \Delta be a cone over \Delta on a new vertex v, and consider the code \scrC := \widetilde \Delta \setminus \{ v\} .

We claim that \scrC is locally good, but not locally great. Indeed, the only ``missing"" codeword
of \scrC is v, and its link is Lkv(\Delta (\scrC )) = \Delta , which is contractible but not collapsible. Thus, \scrC is
locally good (by Proposition 2.17), but not locally great (by definition).

We now consider the question of whether there might be an even stronger local obstruc-
tion beyond ``locally great"" (perhaps ``locally excellent""?). That is, can the conclusion of
Lemma 5.9 be strengthened from ``collapsible"" to some more general property of simplicial
complexes? Or, on the contrary, does the converse of Lemma 5.9 hold? Accordingly, we pose
the following question.

Question 5.15. Is every collapsible simplicial complex the nerve of a convex open cover of
some convex set?

After our manuscript appeared on arXiv, Question 5.15 was resolved in the negative by
Jeffs and Novik [14], who also proved further results about neural codes that can be realized
by convex open sets whose union is convex.

Remark 5.16. Some decision problems related to Question 5.15 have been resolved. The
problem of deciding whether a simplicial complex is the nerve of a convex open cover of some
(not necessarily convex) subset of \BbbR d is decidable [24, 27]. On the other hand, the problem
of deciding whether a simplicial complex is the nerve of a good cover of some subset of \BbbR d,
when d \geq 5, is undecidable [26].

5.4. The locally great decision problem. In this subsection, we prove that the locally
great decision problem is decidable. This result relies on the following lemma.

Lemma 5.17 (Tancer [25]). The problem of deciding whether a given simplicial complex is
collapsible is NP-complete.

Theorem 5.18 (decidability of the locally great decision problem). The problem of deciding
whether a neural code is locally great is NP-hard.

Proof. By Definition 5.11 and Lemma 5.17, the following steps form an algorithm that
determines whether a code is locally great: enumerate \Delta (\scrC ) \setminus \scrC and the corresponding links,
and then check whether any of these links is collapsible.
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To show this is NP-hard, it suffices to reduce (in polynomial time) the problem of deciding
whether a simplicial complex is collapsible (which is NP-complete by Lemma 5.17) to the
locally great decision problem. To this end, we proceed as in the proof of Theorem 4.3:
given any simplicial complex \Delta , consider the cone over \Delta on a new vertex v. This cone
is itself a simplicial complex, which we denote by \Delta \prime . Let \scrC = \Delta \prime \setminus \{ v\} . Then, v is the
only codeword in \Delta (\scrC ) that is missing from \scrC . So, by Definition 5.11, the original simplicial
complex \Delta = Lkv(\Delta 

\prime ) is collapsible if and only if the code \scrC is locally great.

6. Discussion. We return to the question that opened this work: Which neural codes
are convex? There is a growing literature tackling this question, and here we resolved some
foundational problems in this developing theory. In summary, we now know the following:

\scrC is convex
(\mathrm{a})
=\Rightarrow \scrC is locally great

(\mathrm{b})
=\Rightarrow \scrC is a good-cover code \leftrightarrow \scrC is locally good

(\mathrm{c})
=\Rightarrow \scrC is connected,

and the implications (a)--(c) are not equivalences. Also, it is undecidable to tell whether an
arbitrary neural code \scrC is locally good, NP-hard to tell whether \scrC is locally great, and the
problem remains open for determining whether \scrC is convex (Question 4.5). The problem of
determining whether a code is connected is decidable; this follows from the characterization
of such codes given in [19, Proposition 1].

We note that convexity is not characterized by local obstructions, even those more general
than the ones considered here. The most general local obstruction, introduced by Jeffs and
Novik after our manuscript appeared on arXiv, requires only that the link of every missing
codeword is the nerve of a convex open cover (which implies that the link is contractible and
collapsible) [14]. Jeffs and Novik called codes without such an obstruction ``locally perfect,""
and extended implication (a) as follows: convex \Rightarrow locally perfect \Rightarrow locally great. For both
of these implications, the converse is false [14]. In particular, convexity is not equivalent to
the most general local obstruction.

An additional problem suggested by our work pertains to detecting our new local obstruc-
tions (those of the second kind). Neural codes have been studied from an algebraic standpoint
via neural ideals, which are closely related to the Stanley--Reisner ideal of a code's simplicial
complex [4, 5, 7, 11, 13, 16, 18]. Using these algebraic tools, it is possible to find local ob-
structions that can be detected by homology, which suffices to determine contractibility for
small simplicial complexes. It would be interesting to see whether collapsibility of links can
be characterized in a similar way, as unlike contractibility the former is decidable.

Next, we revisit the implication, convex \Rightarrow locally good. The converse is false, in general,
with the first counterexample a 4-sparse code [17], but is true for 2-sparse codes [15]. We
ask, therefore, Is every 3-sparse locally good code, convex? Indeed, for \scrC a 3-sparse code,
mandatory codewords have size one or two, so the corresponding links are graphs, where
contractibility and collapsibility are equivalent (and thus so are the concepts of locally great
and locally good). This problem therefore seems tractable.

Finally, it would be interesting to investigate how the theory of convex codes changes when
considering closed rather than open realizations. Such a theory was initiated by Cruz et al.,
who proved that there are open-convex codes that are not closed-convex and vice versa [3].
We also know that every closed-convex code is a closed-good-cover code (by definition), while
the converse is false [3]. Every closed-convex code also is locally great (Lemma 5.9 and



NEURAL CODES, DECIDABILITY, AND CONVEXITY 19

Theorem 5.10 easily generalize to closed sets, as a version of the nerve theorem applies to
closed sets in \BbbR d). Also, every code that is a closed-good-cover code is locally good (by the
nerve theorem; see [3]). A related open question posed earlier is whether every locally good
code is a closed-good-cover code (Question 3.12). If so, then every locally good code also would
be a closed-good-cover code, unifying some of the theory of open-convex and closed-convex
codes.

We end by revisiting the neuroscience motivation for our work. Recall that place cells
enable the brain to represent an organism's environment by way of neural codes arising from
approximately convex receptive fields. The goal of analyzing which codes are convex, there-
fore, is aimed at understanding what types of codes allow the brain to represent structured
environments. One of the contributions here is to show that while the convex-code decision
problem is still open, some related decision problems are hard. Analyzing data from many
neurons, therefore, may be computationally challenging. On the other hand, our work reveals
the meaning behind the main tool used for precluding convexity, namely, local obstructions:
these obstructions exactly characterize when a code cannot be realized by an (open) good
cover.

Appendix A. Removing interiors of faces. Here we prove Lemma 3.7, which states that
for a contractible simplicial complex \Sigma , removing the relative interiors of some faces with
contractible link, yields a space that is still contractible.

We will use the following notation. For a face \tau of a simplicial complex \Sigma , the open star
of \tau is

St\tau (\Sigma ) :=
\bigcup 

\tau \subseteq \sigma \in \Sigma 
int(\sigma ) \subseteq | \Sigma | .

(This union is, in fact, a disjoint union.) If v is a vertex of \Sigma , we denote St\{ v\} (\Sigma ) also
by Stv(\Sigma ). We denote the barycentric subdivision of \Sigma by \Sigma \prime ; that is, the faces of \Sigma \prime are flags
\tau 1 \subsetneq \tau 2 \subsetneq \cdot \cdot \cdot \subsetneq \tau k of nonempty faces in \Sigma . Equivalently, \Sigma \prime is the order complex of the face
poset of \Sigma . Finally, if \tau is a face of \Sigma , we let v(\tau ) denote the corresponding vertex in the
barycentric subdivision \Sigma \prime .

Lemma A.1. Let \Sigma be a simplicial complex, and let \tau 1, \tau 2, . . . , \tau k be nonempty faces of \Sigma .
Then the intersection

\bigcap 
i Stv(\tau i)(\Sigma 

\prime ) is nonempty if and only if the faces \tau i are totally ordered
by inclusion.

Proof. If
\bigcap 

i Stv(\tau i)(\Sigma 
\prime ) \not = \emptyset , let x \in 

\bigcap 
i Stv(\tau i)(\Sigma 

\prime ). There is a unique face \sigma \prime \in \Sigma \prime with
x \in int(\sigma \prime ). Then int(\sigma \prime ) \subseteq Stv(\tau i)(\Sigma 

\prime ) for all i \in \{ 1, 2, . . . , k\} . Thus, v(\tau 1), v(\tau 2), . . . , v(\tau k)
are vertices of \sigma \prime , and so form a face in \Sigma \prime . This means that the \tau i's, after reordering, form a
flag in \Sigma , i.e., are totally ordered by inclusion.

Conversely, if, after reordering, \tau 1 \subseteq \tau 2 \subseteq \cdot \cdot \cdot \subseteq \tau k, then this flag corresponds to a face \sigma \prime 

of \Sigma \prime with vertex set v(\tau 1), v(\tau 2), . . . , v(\tau k). Now int(\sigma \prime ) \subseteq Stv(\tau i)(\Sigma 
\prime ) for all i \in \{ 1, 2, . . . , k\} ,

so
\bigcap 

i Stv(\tau i)(\Sigma 
\prime ) \not = \emptyset .

Lemma A.2. Let \Gamma be a collection of faces of a simplicial complex \Sigma . Let K =
\bigcup 

\sigma \in \Gamma int(\sigma ) \subseteq 
| \Sigma | . Then for any \tau \in \Gamma , the intersection K \cap Stv(\tau )(\Sigma 

\prime ) is open in K and contractible. More-
over, the collection

\scrU =
\bigl\{ 
K \cap Stv(\tau )(\Sigma 

\prime ) | \tau \in \Gamma 
\bigr\} 
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is a good cover of K, and the nerve \scrN (\scrU ) is homotopy equivalent to K.

Proof. The open star Stv(\tau )(\Sigma 
\prime ) is open in | \Sigma | and thus K\cap Stv(\tau )(\Sigma 

\prime ) is open in K. There
is a deformation retraction of Stv(\tau )(\Sigma 

\prime ) to v(\tau ) along straight lines. Indeed, if \sigma is a face
of \Sigma with \tau \subseteq \sigma , then for any x \in int(\sigma ) the segment from v(\tau ) to x, excluding v(\tau ), is
entirely within int(\sigma ). Thus the deformation retraction induces a deformation retraction of
K \cap Stv(\tau )(\Sigma 

\prime ) to v(\tau ). So, K \cap Stv(\tau )(\Sigma 
\prime ) is contractible.

To show that \scrU is a cover of K, let x \in K. Then x \in int(\sigma ) for some \sigma \in \Gamma , and so
x \in int(\tau \prime ) \subseteq Stv(\sigma )(\Sigma 

\prime ) for some face \tau \prime of \Sigma \prime for which v(\sigma ) is a vertex. Hence, x is in the
set K \cap Stv(\sigma )(\Sigma 

\prime ) from \scrU .
If \tau 1, \tau 2, . . . , \tau k are faces in \Gamma such that

\bigcap 
i(K\cap Stv(\tau i)(\Sigma 

\prime )) \not = \emptyset , then the faces \tau i are totally
ordered by inclusion by Lemma A.1 and thus correspond to a face \tau \prime of \Sigma \prime . It is straightforward
to check that the intersection

\bigcap 
i(K\cap Stv(\tau i)(\Sigma \prime )) is equal to K\cap St\tau \prime (\Sigma \prime ), which is contractible,

since there is a straight-line deformation retraction to the barycenter of \tau \prime , which does not
leave K. Thus, \scrU is a good cover, and so the nerve theorem (Proposition 2.12) implies that
the nerve \scrN (\scrU ) is homotopy equivalent to K.

Proposition A.3 (Lemma 3.7, restated). Let \Sigma be a contractible simplicial complex, and let
\sigma 1, \sigma 2, . . . , \sigma k be faces of \Sigma such that, for i \in \{ 1, 2, . . . , k\} , the link Lk\sigma i(\Sigma ) is contractible.
Then

| \Sigma | \setminus (int(\sigma 1) \cup int(\sigma 2) \cup \cdot \cdot \cdot \cup int(\sigma k))

is contractible.

Proof. Let \Gamma be the collection of all faces of \Sigma with the exception of \sigma 1, \sigma 2, . . . , \sigma k. LetK =\bigcup 
\sigma \in \Gamma int(\sigma ) = | \Sigma | \setminus (int(\sigma 1) \cup int(\sigma 2) \cup \cdot \cdot \cdot \cup int(\sigma k)), and let \scrU =

\bigl\{ 
K \cap Stv(\tau )(\Sigma 

\prime ) | \tau \in \Gamma 
\bigr\} 
.

By Lemma A.2, the collection \scrU is a good cover of K, and the nerve \scrN (\scrU ) is homotopy
equivalent to K.

Pick an inclusion-maximal face among \sigma 1, \sigma 2, . . . , \sigma k, say, \sigma 1 is not contained in any
other \sigma i. Let \widehat \Gamma = \Gamma \cup \{ \sigma 1\} , and let \widehat K =

\bigcup 
\sigma \in \widehat \Gamma int(\sigma ). Let \widehat \scrU =

\bigl\{ 
K\cap Stv(\tau )(\Sigma 

\prime ) | \tau \in \widehat \Gamma \bigr\} . Then,
again by Lemma A.2, \widehat \scrU is a good cover of \widehat K, and the nerve \scrN ( \widehat \scrU ) is homotopy equivalent
to \widehat K.

To recap, \scrN (\scrU ) \simeq K and \scrN ( \widehat \scrU ) \simeq \widehat K. Hence, the following claim would imply that
K \simeq \widehat K.

Claim. \scrN (\scrU ) \simeq \scrN ( \widehat \scrU ).
Moreover, repeating this argument an additional k  - 1 times (applying it next to \widehat K, and

so on) would imply that K \simeq | \Sigma | , and thus, as desired, K is contractible. Hence, we need
only prove the claim.

We first view the two nerves \scrN (\scrU ) and \scrN ( \widehat \scrU ) as (abstract) simplicial complexes. Let
\tau 1, \tau 2, . . . , \tau \ell \in \Gamma . Then

\bigcap 
i

\bigl( 
K \cap Stv(\tau i)(\Sigma 

\prime )
\bigr) 
\not = \emptyset if and only if

\bigcap 
i

\bigl( \widehat K \cap Stv(\tau i)(\Sigma 
\prime )
\bigr) 
\not = \emptyset . This

is because the open vertex stars Stv(\tau i)(\Sigma 
\prime ), if they intersect, cannot only intersect in a subset

of int(\sigma 1), since the \tau i's are totally ordered by inclusion by Lemma A.1, so the corresponding
face \tau \prime of \Sigma \prime would have int(\tau \prime ) contained in the intersection

\bigcap 
i Stv(\tau i)(\Sigma 

\prime ), which would imply
that one of the \tau i's is equal to \sigma 1, and this would contradict the fact that the \tau i's are in \Gamma .
Thus the simplicial complexes \scrN (\scrU ) and \scrN ( \widehat \scrU ) differ only in the vertex w corresponding to
the set \widehat K \cap Stv(\sigma 1)(\Sigma 

\prime ) and the faces incident to w.
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Let \Delta 1 denote the join Lkw(\scrN ( \widehat \scrU )) \ast \{ w\} , and let \Delta 2 = \scrN (\scrU ). Then \Delta 1 is a cone over
the vertex w and thus is contractible; also, \Delta 1 \cap \Delta 2 = Lkw(\scrN ( \widehat \scrU )). So, to complete the
proof it suffices to show that Lkw(\scrN ( \widehat \scrU )) is contractible, as [1, Lemma 10.3] will imply that
\Delta 1 \cup \Delta 2 \simeq \Delta 2, that is, \scrN ( \widehat \scrU ) \simeq \scrN (\scrU ).

Let P be the poset of all faces in \Gamma that are properly contained in \sigma 1, and denote its order
complex by \Delta (P ). We will show that Lkw(\scrN ( \widehat \scrU )) is isomorphic to the join \Delta (P )\ast (Lk\sigma 1(\Sigma ))

\prime .
A face of Lkw(\scrN ( \widehat \scrU )) corresponds to faces \tau 1, \tau 2, . . . , \tau k \in \Gamma such that\widehat K \cap Stv(\sigma 1)(\Sigma 

\prime ) \cap 
\bigcap 
i

( \widehat K \cap Stv(\tau i)(\Sigma 
\prime )) \not = \emptyset .

Up to reordering the \tau i's, this implies, by Lemma A.1, that \tau 1 \subseteq \cdot \cdot \cdot \subseteq \tau \ell \subseteq \sigma 1 \subseteq \tau \ell +1 \subseteq 
\cdot \cdot \cdot \subseteq \tau k. The flag of faces \tau 1 \subseteq \cdot \cdot \cdot \subseteq \tau \ell determines a face of \Delta (P ), while \tau \ell +1 \subseteq \cdot \cdot \cdot \subseteq \tau k
determines a face of (Lk\sigma 1(\Sigma ))

\prime . Conversely, a face of \Delta (P ) \ast (Lk\sigma 1(\Sigma ))
\prime corresponds to a

flag of faces \tau 1 \subseteq \cdot \cdot \cdot \subseteq \tau \ell \subseteq \sigma 1 with \tau 1, . . . , \tau \ell \in \Gamma and a flag \sigma 1 \subseteq \tau \ell +1 \subseteq \cdot \cdot \cdot \subseteq \tau k with
\tau \ell +1, . . . , \tau k \in \Sigma . We chose \sigma 1 as an inclusion-maximal face of \Sigma not in \Gamma , so \tau \ell +1, . . . , \tau k \in \Gamma .
Thus we have inclusions \tau 1 \subseteq \cdot \cdot \cdot \subseteq \tau \ell \subseteq \sigma 1 \subseteq \tau \ell +1 \subseteq \cdot \cdot \cdot \subseteq \tau k with \tau 1, . . . , \tau k \in \Gamma , which
precisely corresponds to a face of Lkw(\scrN ( \widehat \scrU )) by Lemma A.1. Hence, Lkw(\scrN ( \widehat \scrU )) is isomorphic
to \Delta (P ) \ast (Lk\sigma 1(\Sigma ))

\prime .
By hypothesis, (Lk\sigma 1(\Sigma ))

\prime is contractible, and thus the join \Delta (P ) \ast (Lk\sigma 1(\Sigma ))
\prime is con-

tractible. This join, we saw, is isomorphic to Lkv(\scrN ( \widehat \scrU )), so Lkv(\scrN ( \widehat \scrU )) is contract-
ible. Hence, as explained above, [1, Lemma 10.3] implies that \scrN (\scrU ) \simeq \scrN ( \widehat \scrU ), proving the
claim.

Appendix B. Two definitions of collapsible. Here we prove that the definition of ``col-
lapsible"" given earlier (Definition 5.1(2)) is equivalent to Definition B.1 below, which is also
used in the literature [1, 2]. The proof was conveyed to us by Martin Tancer.

Recall that for a simplicial complex \Delta , an elementary collapse induced by a pair (\sigma , \tau ),
where \sigma is a face contained in a unique facet \tau , is the simplicial complex \Delta \prime = \Delta \setminus \{ \nu \in \Delta | 
\sigma \subseteq \nu \} .

Definition B.1. A collapse of \Delta to \Delta \prime is a sequence of elementary collapses induced by
pairs (\sigma , \tau ) with dim\sigma = dim \tau  - 1 starting with \Delta and ending with \Delta \prime . A simplicial complex
is collapsible if it collapses to a point (via some sequence).

Proposition B.2. The definitions of ``collapsible,"" in Definitions 5.1(2) and B.1, respec-
tively, are equivalent.

Proof. Let \Delta be a simplicial complex. We need only show that every elementary collapse
\Delta \rightarrow \Delta \prime as in Definition 5.1(2), i.e., induced by some (\sigma , \tau ) with \sigma \subsetneq \tau and \tau a facet, can be
obtained by a sequence of elementary collapses as in Definition B.1. We proceed by induction
on (dim \tau  - dim\sigma ). The base case, when dim \tau  - dim\sigma = 1, is already an elementary collapse
under either definition.

For the inductive step, assume that dim \tau  - dim\sigma \geq 2 and that every elementary collapse
(of any simplicial complex) induced by pairs (\sigma \prime , \tau \prime ) with (dim \tau \prime  - dim\sigma \prime ) < (dim \tau  - dim\sigma ),
can be obtained by a sequence of elementary collapses as in Definition B.1.

Let z \in \tau \setminus \sigma . Then \sigma \cup \{ z\} \subsetneq \tau , and also \tau is the unique facet containing \sigma \cup \{ z\} .
Therefore, by the inductive hypothesis, the collapse \Delta \rightarrow \widetilde \Delta induced by (\sigma \cup \{ z\} , \tau ) can be
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obtained by a sequence of elementary collapses as in Definition B.1. Thus, we need only
show that we can apply such elementary collapses to \widetilde \Delta to obtain \Delta \prime (the outcome of the
(\sigma , \tau )-collapse).

Note that \sigma and \tau \setminus \{ z\} are both faces of \widetilde \Delta (only faces of \Delta containing \sigma \cup \{ z\} were
removed). We claim that the unique facet of \widetilde \Delta that contains \sigma is \tau \setminus \{ z\} . Indeed, first, \tau \setminus \{ z\} 
contains \sigma (by our choice of \sigma , \tau , and z), and, second, \tau \setminus \{ z\} is maximal in \widetilde \Delta (otherwise \tau 
would not have been maximal in \Delta ).

Thus, by the inductive hypothesis, the collapse \widetilde \Delta \rightarrow \^\Delta induced by (\sigma , \tau \setminus \{ z\} ) can be
obtained by a sequence of elemetary collapses as in Definition B.1. So, to complete the
proof, we need only show that \^\Delta = \Delta \prime . Indeed, \widetilde \Delta was obtained by removing faces of \Delta 
that contain \sigma \cup \{ z\} , and then \^\Delta was obtained by removing faces that contain \sigma ; hence,
\^\Delta = \Delta \setminus \{ \nu \in \Delta | \sigma \subseteq \nu \} = \Delta \prime .
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