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3 Department of Mathematics, University of Utah, Salt Lake City, UT 84112
4 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
5 School of Mathematical Sciences, University of Northern Colorado, Greeley, CO 80639
6 Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
7 Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720
8 Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104
9 Department of Mathematics, Texas A&M University, College Station, TX 77843
10Department of Mathematics, Colby College, Waterville, ME 04901

Abstract

Neural codes allow the brain to represent, process, and store information about the world. Combi-
natorial codes, comprised of binary patterns of neural activity, encode information via the collective
behavior of populations of neurons. A code is called convex if its codewords correspond to regions
defined by an arrangement of convex open sets in Euclidean space. Convex codes have been observed
experimentally in many brain areas, including sensory cortices and the hippocampus, where neurons
exhibit convex receptive fields. What makes a neural code convex? That is, how can we tell from
the intrinsic structure of a code if there exists a corresponding arrangement of convex open sets? In
this work, we provide a complete characterization of local obstructions to convexity. This motivates
us to define max intersection-complete codes, a family guaranteed to have no local obstructions. We
then show how our characterization enables one to use free resolutions of Stanley-Reisner ideals in
order to detect violations of convexity. Taken together, these results provide a significant advance in
understanding the intrinsic combinatorial properties of convex codes.
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1 Introduction

Cracking the neural code is one of the central challenges of neuroscience. Typically, this has been
understood as finding the relationship between the activity of neurons and the stimuli they represent.
To uncover the principles of neural coding, however, it is not enough to describe the various mappings
between stimulus and response. One must also understand the intrinsic structure of neural codes,
independently of what is being encoded [1].

Here we focus our attention on convex codes, which are comprised of activity patterns for neurons
with classical receptive fields. A receptive field Ui is the subset of stimuli that induces neuron i to
respond. Often, Ui is a convex subset of some Euclidean space (see Figure 1). A collection of convex sets
U1, . . . , Un ⊂ Rd naturally associates to each point x ∈ Rd a binary response pattern, c1 · · · cn ∈ {0, 1}n,
where ci = 1 if x ∈ Ui, and ci = 0 otherwise. The set of all such response patterns is a convex code.

Convex codes have been observed experimentally in many brain areas, including sensory cortices and
the hippocampus. Hubel and Wiesel’s discovery in 1959 of orientation-tuned neurons in the primary
visual cortex was perhaps the first example of convex coding in the brain [2]. This was followed by
O’Keefe’s discovery of hippocampal place cells in 1971 [3], showing that convex codes are also used in
the brain’s representation of space. Both discoveries were groundbreaking for neuroscience, and were
later recognized with Nobel Prizes in 1981 [4] and 2014 [5], respectively.

Our motivating examples of convex codes are, in fact, hippocampal place cell codes. A place cell
is a neuron that acts as a position sensor, exhibiting a high firing rate when the animal’s location lies
inside the cell’s preferred region of the environment – its place field. Figure 1 displays the place fields
of four place cells recorded while a rat explored a two-dimensional environment. Each place field is an
approximately convex subset of R2. Taken together, the set of all neural response patterns that can
arise in a population of place cells comprise a convex code for the animal’s position in space.

place �eld of neuron #1 place �eld of neuron #2 place �eld of neuron #3 place �eld of neuron #4

Figure 1: Place fields of four CA1 pyramidal neurons (place cells) in rat hippocampus, recorded while
the animal explored a 1.5m × 1.5m square box environment. Red areas correspond to regions of
space where the corresponding place cells exhibited high firing rates, while dark blue denotes near-zero
activity. Place fields were computed from data provided by the Pastalkova lab, as described in [6].

Despite their relevance to neuroscience, the mathematical theory of convex codes was initiated only
recently [1, 7]. In particular, it is not clear what are the intrinsic combinatorial signatures of convex
and non-convex codes. Identifying such features will enable us to infer coding properties from popu-
lation recordings of neural activity, without needing a priori knowledge of the stimuli being encoded.
Understanding the structure of convex codes is also essential to uncovering the basic principles of how
neural networks are organized in order to learn, store, and process information.

1.1 Convex codes

By a neural code, or simply a code, on n neurons we mean a collection of binary strings C ⊆ {0, 1}n.
The elements of a code are called codewords. We interpret each binary digit as the “on” or “off”
state of a neuron, and consider 0/1 strings of length n and subsets of [n] = {1, . . . , n} interchangeably.
For example, 1101 and 0100 are also denoted {1, 2, 4} and {2}, respectively. We will always assume
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00 · · · 0 ∈ C (i.e., ∅ ∈ C); this assumption simplifies notation in various places but does not alter the
core results.

Let X be a topological space, and consider a collection of open sets U = {U1, . . . , Un}, where⋃n
i=1 Ui ( X. Any such U defines a code,

C(U)
def
=

σ ⊆ [n] | Uσ \
⋃

j∈[n]\σ

Uj 6= ∅

 , (1)

where Uσ
def
= ∩i∈σUi for σ ⊆ [n]. In other words, each codeword σ in C(U) corresponds to the portion

of Uσ that is not covered by other sets. In particular, C(U) is not the same as the nerve of the cover,
N (U) (see Section 3.2). By convention, U∅ = X, and so ∅ ∈ C(U).

For any code C, there always exists an open cover U such that C = C(U) [1, Lemma 2.1]. However,
it may be impossible to choose the Uis to all be convex. We thus have the following definitions, which
were first introduced in [1]:

Definition 1.1. Let C be a binary code on n neurons. If there exists a collection of open sets U =
{U1, . . . , Un} such that C = C(U) and the Uis are all convex subsets of Rd, then we say that C is a
convex code. The smallest d such that this is possible is called the minimal embedding dimension, d(C).

Note that the definition of a convex code is extrinsic: a code is convex if it can be realized by an
arrangement of convex open sets in some Euclidean space. How can we characterize convex codes
intrinsically? If a code is not convex, how can we prove this? If a code is convex, what is the minimal
dimension needed for the corresponding open sets?

In this work, we tackle these questions by building on mathematical ideas from [1] and [8]. In
particular, we study local obstructions to convexity, a notion first introduced in [8]. Our main result
is Theorem 1.3, which provides a complete characterization of codes with no local obstructions. In
Section 2 we present a series of examples that illustrate the ideas summarized in Section 1.3. Sections 3
and 4 are devoted to additional background and technical results needed for the proof of Theorem 1.3.
Finally, in Section 5 we show how tools from combinatorial commutative algebra, such as Hochster’s
formula, can be used to determine that a code is not convex.

1.2 Preliminaries

Simplicial complexes. A simplicial complex ∆ on n vertices is a nonempty collection of subsets of
[n] that is closed under inclusion. In other words, if σ ∈ ∆ and τ ⊂ σ, then τ ∈ ∆. The elements of a
simplicial complex are called simplices or faces. The dimension of a face, σ ∈ ∆, is defined to be |σ|−1.
The dimension of a simplicial complex ∆ is equal to the dimension of its largest face: maxσ∈∆ |σ| − 1.
If ∆ consists of all 2n subsets of [n], then it is the full simplex of dimension n− 1. The hollow simplex
contains all proper subsets of [n], but not [n], and thus has dimension n− 2.

Faces of a simplicial complex that are maximal under inclusion are referred to as facets. If we
consider the facets together with all their intersections, we obtain the set

F∩(∆)
def
=

{
k⋂
i=1

ρi | ρi is a facet of ∆ for each i = 1, . . . , k

}
∪ {∅}.

We refer to the elements of F∩(∆) as max intersections of ∆. The empty set is added so that F∩(∆)
can be regarded as a code, consistent with our convention that the all-zeros word is always included.

Restrictions and links are standard constructions from simplicial complexes. The restriction of ∆
to σ is the simplicial complex

∆|σ
def
= {ω ∈ ∆ | ω ⊆ σ} .
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For any σ ∈ ∆, the link of σ inside ∆ is

Lkσ(∆)
def
= {ω ∈ ∆ | σ ∩ ω = ∅ and σ ∪ ω ∈ ∆} .

Note that it is more common to write Lk∆(σ) or link∆(σ), instead of Lkσ(∆) (see, for example, [9]).
However, because we will often fix σ and consider its link inside different simplicial complexes, such as
∆|σ∪τ , it is more convenient to put σ in the subscript.

The simplicial complex of a code. To any code C, we can associate a simplicial complex ∆(C) by
simply including all subsets of codewords:

∆(C) def
= {σ ⊆ [n] | σ ⊆ c for some c ∈ C} .

∆(C) is called the simplicial complex of the code, and is the smallest simplicial complex that contains all
elements of C. The facets of ∆(C) correspond to the codewords in C that are maximal under inclusion:
these are the maximal codewords.

Local obstructions to convexity. At first glance, it may seem that all codes should be convex,
since the convex sets Ui can be chosen to reside in arbitrarily high dimensions. This is not the case,
however, as non-convex codes arise for as few as n = 3 neurons [1]. To understand what can go wrong,
consider a code with the following property: any codeword with a 1 in the first position also has a
1 in the second or third position, but no codeword has a 1 in all three positions. This implies that
any corresponding cover U must have U1 ⊆ U2 ∪ U3, but U1 ∩ U2 ∩ U3 = ∅. The result is that U1 is a
disjoint union of two nonempty open sets, U1 ∩ U2 and U1 ∩ U3, and is hence disconnected. Since all
convex sets are connected, we conclude that our code cannot be convex. The contradiction stems from
a topological inconsistency that emerges if the code is assumed to be convex.

This type of topological obstruction to convexity generalizes to a family of local obstructions, first
introduced in [8]. We define local obstructions precisely in Section 3. There we also show that a code
with one or more local obstructions cannot be convex:

Lemma 1.2. If C is a convex code, then C has no local obstructions.

This fact was first observed in [8], using slightly different language. The converse, unfortunately, is not
true. See Example 2.3 for a counterexample that first appeared in [10].

1.3 Summary of main results

To prove that a neural code is convex, it suffices to exhibit a convex realization. That is, it suffices to
find a set of convex open sets U = {U1, . . . , Un} such that C = C(U). Our strategy for proving that
a code is not convex is to show that it has a local obstruction to convexity. Which codes have local
obstructions?

Perhaps surprisingly, the question of whether or not a given code C has a local obstruction can be
reduced to the question of whether or not it contains a certain minimal code, Cmin(∆), which depends
only on the simplicial complex ∆ = ∆(C). This is our main result:

Theorem 1.3 (Characterization of local obstructions). For each simplicial complex ∆, there is a
unique minimal code Cmin(∆) with the following properties:

(i) the simplicial complex of Cmin(∆) is ∆, and

(ii) for any code C with simplicial complex ∆, C has no local obstructions if and only if C ⊇ Cmin(∆).

Moreover, Cmin(∆) depends only on the topology of the links of ∆:

Cmin(∆) = {σ ∈ ∆ | Lkσ(∆) is non-contractible} ∪ {∅}.
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We will regard the elements of Cmin(∆) as “mandatory” codewords with respect to convexity,
because they must all be included in order for a code C with ∆(C) = ∆ to be convex. From the above
description of Cmin(∆), we can prove the following lemma.

Lemma 1.4. Cmin(∆) ⊆ F∩(∆). That is, each nonempty element of Cmin(∆) is an intersection of facets
of ∆.

Our proofs of Theorem 1.3 and Lemma 1.4 are given in Section 4.2. Unfortunately, finding all
elements of Cmin(∆) for arbitrary ∆ is, in general, undecidable (see Section 5). Nevertheless, we can
algorithmically compute a subset, MH(∆), of “homologically-detectable” mandatory codewords. In
Section 5 we show how to computeMH(∆) using machinery from combinatorial commutative algebra.
Lemma 1.4 also tells us that every element of Cmin(∆) must be an intersection of facets of ∆ – that is,
an element of F∩(∆). We thus have the inclusions:

MH(∆) ⊆ Cmin(∆) ⊆ F∩(∆), (2)

where both MH(∆) and F∩(∆) are straightforwardly computable. Note that if MH(∆) = F∩(∆),
then we can conclude that Cmin(∆) = F∩(∆). Moreover, if C ⊇ F∩(∆), then C ⊇ Cmin(∆), and thus C
has no local obstructions (and is potentially convex). This motivates the following definition:

Definition 1.5. A neural code C is max ∩-complete (or max intersection-complete) if C ⊇ F∩(∆(C)).

We therefore have a simple combinatorial condition for a code that guarantees it has no local
obstructions:

Corollary 1.6. If a neural code C is max ∩-complete, then C has no local obstructions.

For n ≤ 4, the convex codes are precisely those codes that are max ∩-complete.

Proposition 1.7. Let C be a code on n ≤ 4 neurons. Then C is convex if and only if C is max
∩-complete.

This is shown in Supplementary Text S1, where we provide a complete classification of convex codes
on n = 4 neurons. Proposition 1.7 does not extend to n > 4, however, since beginning in n = 5 there
are convex codes that are not max ∩-complete (see Example 2.2). This raises the question: are there
max ∩-complete codes that are not convex? In a previous version of this paper, we conjectured that
all max ∩-complete codes are convex [11]. This conjecture has recently been proven [12], using ideas
similar to what we illustrate in Example 2.4.

Proposition 1.8 ([12, Theorem 4.4]). If C is max ∩-complete, then C is convex.

Finally, in Supplementary Text S3 we present some straightforward bounds on the minimal em-
bedding dimension d(C), obtained using results about d-representability of the associated simplicial
complex ∆(C). In particular, we find bounds from Helly’s theorem and the Fractional Helly theo-
rem. Unfortunately, these results all stem from ∆(C). In our classification of convex codes for n ≤ 4,
however, it is clear that the presence or absence of specific codewords can affect d(C), even if ∆(C)
remains unchanged (see Table 2 in Supplementary Text S1). The problem of how to use this additional
information about a code in order to improve the bounds on d(C) remains wide open.

2 Examples

Our first example depicts a convex code with minimal embedding dimension d(C) = 2.
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Figure 2: (a) An arrangement U = {U1, U2, U3, U4} of convex open sets. Black dots mark regions
corresponding to distinct codewords in C = C(U). From left to right, the codewords are 0000, 1000,
1100, 1010, 1110, 0110, 0010, 0111, 0011, and 0001. (b) The simplicial complex ∆(C) for the code C
defined in (a). The two facets, 123 and 234, correspond to the two maximal codewords, 1110 and 0111,
respectively. This simplicial complex is also equal to the nerve of the cover N (U) (see Section 3.2).

Example 2.1. Consider the open cover U illustrated in Figure 2a. The corresponding code, C = C(U),
has 10 codewords. C is a convex code, by construction, and it is easy to check that d(C) = 2. The
simplicial complex ∆(C) (see Figure 2b) loses some of the information about the cover U that is present
in C. In particular, U2 ⊆ U1∪U3 and U2∩U4 ⊆ U3 is reflected in C, but not in ∆(C). Note that we can
infer U2 ⊆ U1 ∪ U3 directly from the code, because any codeword with neuron 2 “on” also has neuron
1 or 3 “on.”

Note that the convex code in Example 2.1 is also max ∩-complete, as guaranteed by Proposition 1.7.
The next example shows that this proposition does not hold for n ≥ 5.

2
2

3

1

4

5

3 4

5

a b c

1

2 3 4 5

Figure 3: (a) A simplicial complex ∆ on n = 5 vertices. The vertex 1 is an intersection of facets, but
is not contained in the code C of Example 2.2. (b) The link Lk1(∆) (see Section 3.3). (c) A convex
realization of the code C. The set U1 corresponding to neuron 1 (shaded) is completely covered by the
other sets U2, . . . , U5, consistent with the fact that 1 /∈ C.

Example 2.2. The simplicial complex ∆ shown in Figure 3a has facets 123, 134, and 145. Their
intersections yield the faces 1, 13, and 14, so that F∩(∆) = {123, 134, 145, 13, 14, 1, ∅}. For this ∆, we
can compute the minimal code with no local obstructions, Cmin(∆) = {123, 134, 145, 13, 14, ∅}, as in
Theorem 1.3. Note that the element 1 ∈ F∩(∆) is not present in Cmin(∆). Now consider the code
C = ∆\{1}. Clearly, this code has simplicial complex ∆(C) = ∆ : it has a codeword for each face of ∆,
except the vertex 1 (see Figure 3a). By Theorem 1.3, C has no local obstructions because C ⊇ Cmin(∆).
However, C is not max ∩-complete because F∩(∆) 6⊆ C. Nevertheless, C is convex. A convex realization
is shown in Figure 3c.

The absence of local obstructions is a necessary condition for convexity. Unfortunately, it is not
sufficient: the following example shows a code with no local obstructions that is not convex.

Example 2.3 ([10]). Consider the code C = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4, ∅}. The simpli-
cial complex of this code, ∆ = ∆(C), has facets {2345, 123, 134, 145}. It is straightforward to show that
C = Cmin(∆), and thus C has no local obstructions. Despite this, it was shown in [10] using geometric
arguments that C is not convex. Note that this code is not max ∩-complete (the max intersection
123 ∩ 134 ∩ 145 = 1 is not in C).
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The next example illustrates how a code with a single maximal codeword can be embedded in R2.
This basic construction is used repeatedly in our proof of Proposition 1.7 (see Supplementary Text S1),
and inspired aspects of the proof of Proposition 1.8, given in [12].

1111

0011

1
0
1
1

0
0
0
1

1101

1
1
0
0

0
0
1
0

U1 U2

U3 U4

Figure 4: A convex realization in R2 of the code in Example 2.4. (Left) Each non-maximal codeword
is assigned a region outside the polygon, but inside the disk. (Right) For each neuron i, the convex set
Ui is the union of all regions corresponding to codewords with a 1 in the ith position.

Example 2.4. Consider the code C = {1111, 1011, 1101, 1100, 0011, 0010, 0001, 0000}, with unique
maximal codeword 1111. Figure 4 depicts the construction of a convex realization in R2. All regions
corresponding to codewords are subsets of a disk in R2. For each i = 1, . . . , 4, the convex set Ui is the
union of all regions whose corresponding codewords have a 1 in the ith position. For example, U1 is
the union of the four regions corresponding to codewords 1111, 1011, 1101, and 1100.

The above construction can be generalized to any code with a unique maximal codeword.

Lemma 2.5. Let C be a code with a unique maximal codeword. Then C is convex, and d(C) ≤ 2.

Proof. Let ρ ∈ C be the unique maximal codeword, and let m = |C|− 2 be the number of non-maximal
codewords, excluding the all-zeros word. Inscribe a regular open m-gon P in an open disk, so that
there are m sectors surrounding P , as in Figure 4. (If m < 3, let P be an open triangle.) Assign each
non-maximal codeword (excluding 00 · · · 0) to a distinct sector inside the disk but outside of P , and
assign the maximal codeword ρ to P . Next, for each i ∈ ρ let Ui be the union of P and all sectors
whose corresponding codewords have a 1 in the ith position, together with their common boundaries
with P . For j ∈ [n] \ ρ, set Uj = ∅. Note that each Ui is open and convex, and C = C({Ui}).

Lemma 2.5 can easily be generalized to any code whose maximal codewords are non-overlapping
(that is, having disjoint supports). In this case, each nonzero codeword is contained in a unique facet
of ∆(C), and the facets thus yield a partition of the code. We can repeat the above construction in
parallel for each part, obtaining the same dimension bound.

Proposition 2.6. Let C be a code with non-overlapping maximal codewords (i.e., the facets of ∆(C)
are disjoint). Then C is convex and d(C) ≤ 2.

3 Local obstructions to convexity

For any simplicial complex ∆, there exists a convex cover U in a high-enough dimensional space Rd
such that ∆ can be realized as ∆(C(U)) [13]. For this reason, the simplicial complex ∆(C) alone is
not sufficient to determine whether or not C is convex. Obstructions to convexity must emerge from
information in the code that goes beyond what is reflected in ∆(C). As was shown in [1], this additional
information is precisely the receptive field relationships, which we turn to now.
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3.1 Receptive field relationships

For a code C on n neurons, let U = {U1, . . . , Un} be any collection of open sets such that C = C(U),
and recall that Uσ =

⋂
i∈σ Ui.

Definition 3.1. A receptive field relationship (RF relationship) of C is a pair (σ, τ) corresponding to
the set containment

Uσ ⊆
⋃
i∈τ

Ui,

where σ 6= ∅, σ ∩ τ = ∅, and Uσ ∩ Ui 6= ∅ for all i ∈ τ .

If τ = ∅, then the relationship (σ, ∅) simply states that Uσ = ∅. Note that relationships of the form
(σ, ∅) reproduce the information in ∆(C), while those of the form (σ, τ) for τ 6= ∅ reflect additional
structure in C that goes beyond the simplicial complex. A minimal RF relationship is one such that
no single neuron can be removed from σ or τ without destroying the containment.

It is important to note that RF relationships are independent of the choice of open sets U (see
Lemma 4.2 of [1]). Hence we denote the set of all RF relationships {(σ, τ)} for a given code C as simply
RF(C). In [1], it was shown that one can compute RF(C) algebraically, using an associated ideal IC .

Example 3.2 (Example 2.1 continued). The code C = C(U) from Example 2.1 has RF relationships
RF(C) = {({1, 4}, ∅), ({1, 2, 4}, ∅), ({1, 3, 4}, ∅), ({1, 2, 3, 4}, ∅), ({2}, {1, 3}), ({2}, {1, 3, 4}), ({2, 4}, {3})}.
Of these, the pairs ({1, 4}, ∅), ({2}, {1, 3}), and ({2, 4}, {3}), corresponding to U1∩U4 = ∅, U2 ⊆ U1∪U3,
and U2 ∩ U4 ⊆ U3 respectively, are the minimal RF relationships.

The following lemma illustrates a simple case where RF relationships can be used to show that a
code cannot have a convex realization. (This is a special case of Lemma 3.6 below.)

Lemma 3.3. Let C = C(U). If C has RF relationships Uσ ⊆ Ui ∪ Uj and Uσ ∩ Ui ∩ Uj = ∅ for some
σ ⊆ [n] and distinct i, j /∈ σ, then C is not a convex code.

Proof. By assumption, {(σ, {i, j}), (σ ∪ {i, j}, ∅)} ⊆ RF(C). It follows that the sets Vi = Uσ ∩ Ui 6= ∅
and Vj = Uσ ∩ Uj 6= ∅ are disjoint open sets that each intersect Uσ, and Uσ ⊆ Vi ∪ Vj . We can thus
conclude that Uσ is disconnected in any open cover U such that C = C(U). This implies that C cannot
have a convex realization, because if the Uis were all convex then Uσ would be convex, contradicting
the fact that it is disconnected.

The above proof relies on the observation that Uσ must be convex in any convex realization U , but
the properties of the code imply that Uσ is covered by a collection of open sets whose topology does
not match that of a convex set. This topological inconsistency between a set and its cover is, at its
core, a contradiction arising from the Nerve lemma, which we discuss next.

3.2 The Nerve lemma

The nerve of an open cover U = {U1, . . . , Un} is the simplicial complex

N (U)
def
= {σ ⊆ [n] | Uσ 6= ∅}.

In fact, N (U) = ∆(C(U)), so the nerve can be recovered directly from the code C(U). The Nerve lemma
tells us that N (U) carries a surprising amount of topological information about the underlying space
covered by U , provided U is a good cover. Recall that a good cover is a collection of open sets {Ui}
where every non-empty intersection, Uσ =

⋂
i∈σ Ui, is contractible.1

1A set is contractible if it is homotopy-equivalent to a point [14].
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Lemma 3.4 (Nerve lemma). If U is a good cover, then
⋃n
i=1 Ui is homotopy-equivalent to N (U). In

particular,
⋃n
i=1 Ui and N (U) have exactly the same homology groups.

This result is well known, and can be obtained as a direct consequence of [14, Corollary 4G.3].
Now observe that an open cover comprised of convex sets is always a good cover, because the

intersection of convex sets is convex, and hence contractible. For example, if C = C(U) for a convex
cover U , then ∆(C) must match the homotopy type of

⋃n
i=1 Ui. This fact was previously exploited to

extract topological information about the represented space from hippocampal place cell activity [15].
The Nerve lemma is also key to our notion of local obstructions, which we turn to next.

3.3 Local obstructions

Local obstructions arise when a code contains a RF relationship (σ, τ), so that Uσ ⊆
⋃
i∈τ Ui, but the

nerve of the corresponding cover of Uσ by the restricted sets {Ui ∩ Uσ}i∈τ is not contractible. By the
Nerve lemma, if the Uis are all convex then N ({Uσ ∩ Ui}i∈τ ) must have the same homotopy type as
Uσ, which is contractible. If N ({Uσ ∩Ui}i∈τ ) fails to be contractible, we can conclude that the Uis can
not all be convex.

Now, observe that the nerve of the restricted cover N ({Uσ ∩ Ui}i∈τ ) is related to the nerve of the
original cover N (U) as follows:

N ({Uσ ∩ Ui}i∈τ ) = {ω ∈ N (U) | σ ∩ ω = ∅, σ ∪ ω ∈ N (U), and ω ⊆ τ}.

In fact, letting ∆ = N (U) and considering the restricted complex ∆|σ∪τ , we recognize that the right-
hand side above is precisely the link,

N ({Uσ ∩ Ui}i∈τ ) = Lkσ(∆|σ∪τ ).

We can now define a local obstruction to convexity.

Definition 3.5. Let (σ, τ) ∈ RF(C), and let ∆ = ∆(C). We say that (σ, τ) is a local obstruction of C
if τ 6= ∅ and Lkσ(∆|σ∪τ ) is not contractible.

Local obstructions are thus detected via non-contractible links of the form Lkσ(∆|σ∪τ ), where
(σ, τ) ∈ RF(C). Figure 5 displays all possible links that can arise for |τ | ≤ 4. Non-contractible links
are highlighted in red. Note also that τ 6= ∅ implies σ /∈ C and Uσ 6= ∅, as the definition of a RF
relationship requires that Uσ ∩ Ui 6= ∅ for all i ∈ τ . Any local obstruction (σ, τ) must therefore have
σ ∈ ∆(C) \ C and Lkσ(∆|σ∪τ ) nonempty.

The arguments leading up to the definition of local obstruction imply the following simple conse-
quence of the Nerve lemma, which was previously observed in [8].

Lemma 3.6 (Lemma 1.2). If C has a local obstruction, then C is not a convex code.

In general, the question of whether or not a given simplicial complex is contractible is undecidable
[16]; however, in some cases it is easy to see that all relevant links will be contractible. This yields a
simple condition on RF relationships that guarantees that a code has no local obstructions.

Lemma 3.7. Let C = C(U). If for each (σ, τ) ∈ RF(C) we have Uσ ∩ Uτ 6= ∅, then C has no local
obstructions.

Proof. Let ∆ = ∆(C). Uσ ∩Uτ 6= ∅ implies Lkσ(∆|σ∪τ ) is the full simplex on the vertex set τ , which is
contractible. If this is true for every RF relationship, then none can give rise to a local obstruction.

For example, if 11 · · · 1 ∈ C, then Uσ ∩ Uτ 6= ∅ for any pair σ, τ ⊂ [n], so C has no local obstructions.
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Figure 5: All simplicial complexes on up to n = 4 vertices, up to permutation equivalence. These can each arise
as links of the form Lkσ(∆|σ∪τ ) for |τ | ≤ 4. Red labels correspond to non-contractible complexes. Note that
L13 is the only simplicial complex on n ≤ 4 vertices that is contractible but not a cone.
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4 Characterizing local obstructions via mandatory codewords

From the definition of local obstruction, it seems that in order to show that a code has no local obstruc-
tions one would need to check the contractibility of all links of the form Lkσ(∆|σ∪τ ) corresponding to all
pairs (σ, τ) ∈ RF(C). We shall see in this section that in fact we only need to check for contractibility
of links inside the full complex ∆ – that is, links of the form Lkσ(∆). This is key to obtaining a list of
mandatory codewords, Cmin(∆), that depends only on ∆, and not on any further details of the code.

In Section 4.1 we prove some important lemmas about links, and then use them in Section 4.2 to
prove Theorem 1.3.

4.1 Link lemmas

In what follows, the notation

conev(∆)
def
= {{v} ∪ ω | ω ∈ ∆} ∪∆

denotes the cone of v over ∆, where v is a new vertex not contained in ∆. Any simplicial complex that
is a cone over a sub-complex, so that ∆ = conev(∆

′), is automatically contractible. In Figure 5, the
only contractible link that is not a cone is L13. This is the same link that appeared in Figure 3b of
Example 2.2.

Lemma 4.1. Let ∆ be a simplicial complex on [n], σ ∈ ∆, and v ∈ [n] such that v /∈ σ and σ∪{v} ∈ ∆.
Then Lkσ∪{v}(∆) ⊆ Lkσ(∆|[n]\{v}), and

Lkσ(∆) = Lkσ(∆|[n]\{v}) ∪ conev(Lkσ∪{v}(∆)).

Proof. The proof follows from the definition of the link. First, observe that

Lkσ∪{v}(∆) = {ω ⊂ [n] | v /∈ ω, ω ∩ σ = ∅, and ω ∪ σ ∪ {v} ∈ ∆}
= {ω ⊂ [n] \ {v} | ω ∩ σ = ∅, and ω ∪ σ ∪ {v} ∈ ∆}
⊆ {ω ⊂ [n] \ {v} | ω ∩ σ = ∅, and ω ∪ σ ∈ ∆|[n]\{v}}
= Lkσ(∆|[n]\{v}),

which establishes that Lkσ∪{v}(∆) ⊆ Lkσ(∆|[n]\{v}). Next, observe that

conev(Lkσ∪{v}(∆)) \ Lkσ∪{v}(∆) = {{v} ∪ ω | ω ∈ Lkσ∪{v}(∆)}
= {{v} ∪ ω | ω ⊂ [n], v /∈ ω, ω ∩ σ = ∅, and ω ∪ {v} ∪ σ ∈ ∆}
= {τ ⊂ [n] | v ∈ τ, τ ∩ σ = ∅, and τ ∪ σ ∈ ∆}
= {ω ∈ Lkσ(∆) | v ∈ ω}.

Finally,
Lkσ(∆|[n]\{v}) = {ω ∈ Lkσ(∆) | v /∈ ω}.

From here the second statement is clear.

Corollary 4.2. Let ∆ be a simplicial complex on [n], σ ∈ ∆, and v ∈ [n] such that v /∈ σ and
σ ∪ {v} ∈ ∆. If Lkσ∪{v}(∆) is contractible, then Lkσ(∆) and Lkσ(∆|[n]\{v}) are homotopy-equivalent.

Proof. Lemma 4.1 states that Lkσ∪{v}(∆) ⊆ Lkσ(∆|[n]\{v}), and that Lkσ(∆) can be obtained from
Lkσ(∆|[n]\{v}) by coning off the subcomplex Lkσ∪{v}(∆) – that is, by including conev(Lkσ∪{v}(∆)). If
this subcomplex is itself contractible, then the homotopy type is preserved.

Another useful corollary follows from the one above by simply setting ∆ = ∆|σ∪τ∪{v} and [n] =
σ ∪ τ ∪ {v}. We immediately see that if both Lkσ(∆|σ∪τ∪{v}) and Lkσ∪{v}(∆|σ∪τ∪{v}) are contractible,
then Lkσ(∆|σ∪τ ) is contractible. Stated another way:
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Corollary 4.3. Assume v /∈ σ and σ ∩ τ = ∅. If Lkσ(∆|σ∪τ ) is not contractible, then either (i)
Lkσ(∆|σ∪τ∪{v}) is not contractible, and/or (ii) σ∪{v} ∈ ∆ and Lkσ∪{v}(∆|σ∪τ∪{v}) is not contractible.

This corollary can be extended to show that for every non-contractible link Lkσ(∆|σ∪τ ), there exists
a non-contractible “big” link Lkσ′(∆) for some σ′ ⊇ σ. This is because vertices outside of σ ∪ τ can
be added one by one to either σ or its complement, preserving the non-contractibility of the new link
at each step. (Note that if σ ∪ {v} /∈ ∆, we can always add v to the complement. In this case,
Lkσ(∆|σ∪τ ) = Lkσ(∆|σ∪τ∪{v}), so we are in case (i) of Corollary 4.3.) In other words, we have the
following lemma:

Lemma 4.4. Let σ, τ ∈ ∆. Suppose σ ∩ τ = ∅, and Lkσ(∆|σ∪τ ) is not contractible. Then there exists
σ′ ∈ ∆ such that σ′ ⊇ σ, σ′ ∩ τ = ∅, and Lkσ′(∆) is not contractible.

The next results show that only intersections of facets (maximal faces under inclusion) can possibly
yield non-contractible links. For any σ ∈ ∆, we denote by fσ the intersection of all facets of ∆
containing σ. In particular, σ = fσ if and only if σ is an intersection of facets of ∆. It is also useful
to observe that a simplicial complex is a cone if and only if the common intersection of all its facets is
non-empty. (Any element of that intersection can serve as a cone point, and a cone point is necessarily
contained in all facets.)

Lemma 4.5. Let σ ∈ ∆. Then σ = fσ ⇔ Lkσ(∆) is not a cone.

Proof. Recall that Lkσ(∆) is a cone if and only if all facets of Lkσ(∆) have a non-empty common
intersection ν. This can happen if and only if σ ∪ ν ⊆ fσ. Note that since ν ∈ Lkσ(∆), we must have
ν ∩ σ = ∅ and hence Lkσ(∆) is a cone if and only if σ 6= fσ.

Furthermore, it is easy to see that every simplicial complex that is not a cone can in fact arise as
the link of an intersection of facets. For any ∆ that is not a cone, simply consider ∆̃ = conev(∆); v is
an intersection of facets of ∆̃, and Lkv(∆̃) = ∆.

The above lemma immediately implies the following corollary:

Corollary 4.6. Let σ ∈ ∆ be nonempty. If σ 6= fσ, then Lkσ(∆) is a cone and hence contractible. In
particular, if Lkσ(∆) is not contractible, then σ must be an intersection of facets of ∆ (i.e., σ ∈ F∩(∆)).

Finally, we note that all pairwise intersections of facets that are not also higher-order intersections
give rise to non-contractible links.

Lemma 4.7. Let ∆ be a simplicial complex. If σ = τ1 ∩ τ2, where τ1, τ2 are distinct facets of ∆, and
σ is not contained in any other facet of ∆, then Lkσ(∆) is not contractible.

Proof. Observe that Lkσ(∆) consists of all subsets of ω1 = τ1 \ σ and ω2 = τ2 \ σ, but ω1 and ω2

are disjoint because τ1 and τ2 do not overlap outside of σ. This means Lkσ(∆) has two connected
components, and is thus not contractible.

Note that if σ is a pairwise intersection of facets that is also contained in another facet, then Lkσ(∆)
could be contractible. For example, the vertex 1 in Figure 3a can be expressed as a pairwise intersection
of facets 123 and 145, but is also contained in 134. As shown in Figure 3b, the corresponding link
Lk1(∆) is contractible.

4.2 Proof of Theorem 1.3 and Lemma 1.4

Using the above facts about links, we can now prove Theorem 1.3 and Lemma 1.4. First, we need the
following key proposition.

Proposition 4.8. A code C has no local obstructions if and only if σ ∈ C for every σ ∈ ∆(C) such
that Lkσ(∆(C)) is non-contractible.
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Proof. Let ∆ = ∆(C), and let U = {Ui} be any collection of open sets such that C = C(U). (⇒) We
prove the contrapositive. Suppose there exists σ ∈ ∆(C)\C such that Lkσ(∆) is non-contractible. Then
Uσ must be covered by the other sets {Ui}i/∈σ, and since Lkσ(∆) is not contractible, the RF relationship
(σ, σ̄) is a local obstruction. (⇐) We again prove the contrapositive. Suppose C has a local obstruction
(σ, τ). This means that σ ∩ τ = ∅, Uσ ⊆

⋃
i∈τ Ui, and Lkσ(∆|σ∪τ ) is not contractible. By Lemma 4.4,

there exists σ′ ⊇ σ such that σ′∩τ = ∅ and Lkσ′(∆) is not contractible. Moreover, Uσ′ ⊆ Uσ ⊆
⋃
i∈τ Ui

with σ′ ∩ τ = ∅, which implies σ′ /∈ C.

Theorem 1.3 now follows as a corollary of Proposition 4.8. To see this, let

Cmin(∆) = {σ ∈ ∆ | Lkσ(∆) is non-contractible} ∪ {∅},

and note that Cmin(∆) has simplicial complex ∆. This is because for any facet ρ ∈ ∆, Lkρ(∆) = ∅,
which is non-contractible, and thus Cmin(∆) contains all the facets of ∆. By Proposition 4.8, any code
C with simplicial complex ∆ has no local obstructions precisely when C ⊇ Cmin(∆). Thus, Cmin(∆) is
the unique code satisfying the required properties in Theorem 1.3.

Finally, it is easy to see that Lemma 1.4 follows directly from Corollary 4.6.

5 Computing mandatory codewords algebraically

Computing Cmin(∆) is certainly simpler than finding all local obstructions. However, it is still difficult
in general because determining whether or not a simplicial complex is contractible is undecidable [16].
For this reason, we now consider the subset of Cmin(∆) corresponding to non-contractible links that
can be detected via homology:

MH(∆)
def
= {σ ∈ ∆ | dim H̃i(Lkσ(∆),k) > 0 for some i}, (3)

where the H̃i(·) are reduced simplicial homology groups, and k is a field. Homology groups are topo-
logical invariants that can be easily computed for any simplicial complex, and reduced homology groups
simply add a shift in the dimension of H̃0(·). This shift is designed so that for any contractible space
X, dim H̃i(X,k) = 0 for all integers i. Clearly, MH(∆) ⊆ Cmin(∆), and MH(∆) is thus a subset of
the mandatory codewords that must be included in any convex code C with ∆(C) = ∆.2 On the other
hand, MH(∆) ⊆ C does not guarantee that C has no local obstructions, as a homologically trivial
simplicial complex may be non-contractible.3

It turns out that the entire setMH(∆) can be computed algebraically, via a minimal free resolution
of an ideal built from ∆. Specifically,

MH(∆) = {σ ∈ ∆ | βi,σ̄(S/I∆∗) > 0 for some i > 0}. (4)

where S = k[x1, . . . , xn], the ideal I∆∗ is the Stanley-Reisner ideal of the Alexander dual ∆∗, and
βi,σ̄(S/I∆∗) are the Betti numbers of a minimal free resolution of the ring S/I∆∗ . This is a direct
consequence of Hochster’s formula:

dim H̃i(Lkσ(∆),k) = βi+2,σ̄(S/I∆∗). (5)

A derivation of the above dual version of Hochster’s formula, which follows easily from alternative
formulations in [9], is given in Supplementary Text S2 (see Lemma 6.5).

Moreover, the subset of mandatory codewords MH(∆) can be easily computed using existing
computational algebra software, such as Macaulay2 [18]. We now describe this via an explicit example.

2Note that while MH(∆) depends on the choice of field k, MH(∆) ⊆ Cmin(∆) for any k.
3For example, consider a triangulation of the punctured Poincaré homology sphere: this simplicial complex has all-

vanishing reduced homology groups, but is non-contractible [17].
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Example 5.1. Let ∆ be the simplicial complex L25 in Figure 5. The Stanley-Reisner ideal is given
by I∆ = 〈x1x2x4, x2x3x4〉, and its Alexander dual is I∆∗ = 〈x1, x2, x4〉 ∩ 〈x2, x3, x4〉 = 〈x1x3, x2, x4〉. A
minimal free resolution of S/I∆∗ is:

0←− S/I∆∗
[ x1x3 x2 x4 ]

←−−−−−−−−−−−−− S(−2)⊕ S(−1)2


x2 x4 0
−x1x3 0 x4

0 −x1x3 −x2


←−−−−−−−−−−−−−−−−−−−−

S(−3)2 ⊕ S(−2)


x4

−x2

x1x3


←−−−−−−− S(−4)←− 0

The Betti number βi,σ(S/I∆∗) is the dimension of the module in multidegree σ at step i of the resolution,
where S/I∆∗ is step 0 and the steps increase as we move from left to right. At step 0, the total degree
is always 0. For the above resolution, the multidegrees at S(−2)⊕S(−1)2 (step 1) are 1010, 0100, and
0001; at S(−3)2⊕S(−2) (step 2), we have 1110, 1011, and 0101; and at S(−4) (step 4) the multidegree
is 1111. This immediately gives us the nonzero Betti numbers:

β0,0000(S/I∆∗) = 1, β1,1010(S/I∆∗) = 1, β1,0100(S/I∆∗) = 1, β1,0001(S/I∆∗) = 1,
β2,1110(S/I∆∗) = 1, β2,1011(S/I∆∗) = 1, β2,0101(S/I∆∗) = 1, β3,1111(S/I∆∗) = 1.

Recalling from equation (4) that the multidegrees correspond to complements σ̄ of faces in ∆, we can
now immediately read off the elements of MH(∆) from the above βi,σ̄ for i > 0 as:

MH(∆) = {0101, 1011, 1110, 0001, 0100, 1010, 0000} = {24, 134, 123, 4, 2, 13, ∅}.

Note that the first three elements of MH(∆) above, obtained from the Betti numbers β1,∗ in step
1 of the resolution, are precisely the facets of ∆. The next three elements, 0001, 0100, and 1010, are
mandatory codewords: they must be included for a code with simplicial complex ∆ to be convex. These
all correspond to pairwise intersections of facets, and are obtained from the Betti numbers β2,∗ at step
2 of the resolution; this is consistent with the fact that the corresponding links are all disconnected,
resulting in non-trivial H̃0(Lkσ(∆),k). The last element, 0000, reflects the fact that Lk∅(∆) = ∆, and
dim H̃1(∆,k) = 1 for ∆ = L25. By convention, however, we always include the all-zeros codeword in
our codes (see Section 1.2).

Using Macaulay2 [18], the Betti numbers for the simplicial complex ∆ above can be computed
through the following sequence of commands (choosing k = Z2, and suppressing outputs except for the
Betti tally at the end):

i1 : kk = ZZ/2;

i2 : S = kk[x1,x2,x3,x4, Degrees => {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}];

i3 : I = monomialIdeal(x1*x2*x4,x2*x3*x4);

i4 : Istar = dual(I);

i5 : M = S^1/Istar;

i6 : Mres = res M; [comment: this step computes the minimal free resolution]

i7 : peek betti Mres

o7 = BettiTally{(0, {0, 0, 0, 0}, 0) => 1}

(1, {0, 0, 0, 1}, 1) => 1

(1, {0, 1, 0, 0}, 1) => 1

(1, {1, 0, 1, 0}, 2) => 1

(2, {0, 1, 0, 1}, 2) => 1

(2, {1, 0, 1, 1}, 3) => 1

(2, {1, 1, 1, 0}, 3) => 1

(3, {1, 1, 1, 1}, 4) => 1
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Each line of the BettiTally displays (i, {σ}, |σ|)⇒ βi,σ. This yields (in order):

β0,0000 = 1, β1,0001 = 1, β1,0100 = 1, β1,1010 = 1, β2,0101 = 1, β2,1011 = 1, β2,1110 = 1, β3,1111 = 1,

which is the same set of nonzero Betti numbers we previously obtained. Recalling again that the
multidegrees correspond to complements σ̄ in (4), and we care only about i > 0, this output immediately
gives us MH(∆) – exactly as before.

The above example illustrates how computational algebra can help us to determine whether a code
has local obstructions. However, as noted in Section 2, even codes without local obstructions may
fail to be convex. Though we have made significant progress via Theorem 1.3, finding a complete
combinatorial characterization of convex codes is still an open problem.
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non-PL spheres with few vertices. Electronic Geometry Models, No. 2003.04.001, 2003.

[18] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic geom-
etry. Available at http://www.math.uiuc.edu/Macaulay2/.

[19] M. Tancer. d-representability of simplicial complexes of fixed dimension. J. Comput. Geom.,
2(1):183–188, 2011.
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6 Supplementary Text
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S1 Classification of convex codes for n ≤ 4

S2 Hochster’s formula

S3 Dimension bounds

S1 Classification of convex codes for n ≤ 4

For n = 1 or n = 2, all codes are convex. The first non-convex codes appear for n = 3. Using our
convention that all codes include the all-zeros codeword, there are a total of 40 permutation-inequivalent
codes on 3 neurons [1]. Of these, only 6 are non-convex (see Table 1 and Lemma 6.1).

label code C ∆(C)
B3 000, 010, 001, 110, 101 L6

B5 000, 010, 110, 101 L6

B6 000, 110, 101 L6

E2 000, 100, 010, 110, 101, 011 L7

E3 000, 100, 110, 101, 011 L7

E4 000, 110, 101, 011 L7

Table 1: All non-convex codes on n = 3 neurons, up to permutation equivalence. Code labels are the
same as in [1], and simplicial complex labels are as in Figures 5 and 6.

Lemma 6.1. There are 6 non-convex codes on n ≤ 3 neurons, up to permutation equivalence. They
are the codes shown in Table 1.

Proof. First, we show that all six codes in Table 1 are not convex. Let ∆L6 and ∆L7 be the sim-
plicial complexes labeled L6 and L7 in Figures 5 and 6. It is easy to see that {1} ∈ Cmin(∆L6) and
{1}, {2}, {3} ∈ Cmin(∆L7), because the corresponding links are non-contractible. Codes B3, B5, and
B6 all have simplicial complex ∆L6, but are missing the codeword 100, corresponding to {1}. Since
{1} ∈ Cmin(∆L6), by Theorem 1.3 these codes each have a local obstruction and thus cannot be convex.
Codes E2, E3, and E4 all have simplicial complex ∆L7, but are missing the codeword 001, corresponding
to {3}. Since {3} ∈ Cmin(∆L7), these codes cannot be convex. All remaining codes for n = 3 neurons
were shown to be convex in [1], via explicit convex realizations in two dimensions.

We now consider n ≤ 4. Figure 6 displays all simplicial complexes on n ≤ 4 vertices, up to
permutation equivalence, and highlights all intersections of two or more facets. By inspection, we see
that every link corresponding to a non-empty max intersection is not contractible. We thus have the
following lemma:

Lemma 6.2. Let C be a neural code on n ≤ 4 neurons. Then C has no local obstructions if and only
if C is max ∩-complete.

Proof. Let ∆ = ∆(C) be the simplicial complex on n ≤ 4 vertices corresponding to the code C. Recall
from Theorem 1.3 that Cmin(∆) consists of all σ ∈ ∆ such that Lkσ(∆) is not contractible. Since,
for n ≤ 4, all non-empty max intersections σ ∈ F∩(∆) have non-contractible links, it follows that
Cmin(∆) = F∩(∆). Therefore, by Theorem 1.3, C has no local obstructions if and only if C ⊇ F∩(∆).
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Note that the proof of Lemma 6.2 relied on showing that Cmin(∆) = F∩(∆). More generally, for any
code C whose simplicial complex ∆ satisfies Cmin(∆) = F∩(∆), we know that C has no local obstructions
if and only if it is max ∩-complete. Combining this with Proposition 1.8, we have the following:

Proposition 6.3. Let ∆ be a simplicial complex satisfying Cmin(∆) = F∩(∆). Then for any C with
∆(C) = ∆, C is convex if and only if it is max ∩-complete.

As a corollary of Lemma 6.2 and Proposition 6.3, we obtain Proposition 1.7.
In fact, for n ≤ 4 we have generated explicit convex realizations for all max ∩-complete codes.

Figure 7 illustrates convex realizations for the max ∩-complete codes corresponding to most of the
simplicial complexes L1-L28. The max ∩-complete codes for the omitted complexes L1-L5, L9-L10,
and L12 all have obvious convex realizations, while those for L15 and L16 are obvious given the
realizations for L7 and L8, respectively.

Table 2 summarizes our classification of n ≤ 4 codes and provides minimal embedding dimensions
d(C) for all the convex codes. Note that d(C) sometimes varies for codes with the same simplicial
complex, depending on which optional codewords are included.
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Figure 6: Classification of convex codes for n ≤ 4. L1-L28 are the 28 possible simplicial complexes ∆ = ∆(C) that
can arise, up to permutation equivalence. For each simplicial complex, faces highlighted in color correspond to
pairwise (red) and triple (orange) intersections of facets (maximal faces). One can check that for each colored face
σ, Lkσ(∆) is not contractible. By Proposition 1.7, any code C with simplicial complex ∆ is convex if and only if C
includes all codewords corresponding to the colored faces. All other non-maximal faces are optional codewords,
whose inclusion or exclusion does not affect convexity. Simplicial complexes with no optional codewords are
labeled +, while those with no (non-maximal) mandatory codewords are labeled ◦. When both + and ◦ labels
apply, as in L1, L2, and L4, we simply use ◦. The possible minimal embedding dimensions d = d(C) that can
arise for convex codes are shown in the lower right corners.
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∆
# non– maximal mandatory optional

d(C) picture notesconvex codewords codewords codewords
codes (facets) (non-maximal) in ∆

L1◦ 0 1 none none 1

L2◦ 0 10, 01 none none 1

L3◦ 0 11 none all (2) 1

L4◦ 0 100, 010, 001 none none 1

L5◦ 0 110, 001 none all (2) 1

L6 3 110, 101 100 010, 001 1 L6-series

L7+ 3 110, 101, 011 all (3) none 2 L7-series convex ⇔ C = ∆(C)
L8◦ 0 111 none all (6) 1, 2 L8-series d = 2 ⇔ ?

L9◦ 0
1000, 0100

none none 1
0010, 0001

L10◦ 0 1100, 0010, 0001 none all (2) 1

L11 3 1100, 1010, 0001 1000 0100, 0010 1 L6-series

L12◦ 0 1100, 0011 none all (4) 1

L13 7 1100, 1010, 0011 1000, 0010 1000, 0001 1 L6-series

L14 4 1100, 1010, 1001 1000 0100, 0010, 0001 1, 2 L6-series d = 2 ⇔ ?

L15+ 3
1100, 1010

all (3) none 2 like L7 convex ⇔ C = ∆(C)
0110, 0001

L16◦ 0 1110, 0001 none all (6) 1, 2 like L8 d = 2 ⇔ ?

L17 10
1100, 1010 1000, 0100

0001 2 L7-series
0110, 0101 0010

L18 40 1110, 0101 0100 1, 2 L8-series
d = 2⇔ C contains

1000, 0010, 0001 {1000, 0010}, or
1100, 1010, 0110 {1100, 0110, 1010}

L19+ 5
1100, 1010

all (4) none 2 L6-series convex ⇔ C = ∆(C)
0101, 0011

L20+ 8
1100, 1010, 1001

all (4) none 2 L7-series convex ⇔ C = ∆(C)
0110, 0011

L21 68 1110, 0101, 0011
0100, 0010 1000, 1100

2 L8-series
0001 1010, 0110

L22 62 1110, 0111 0110
1000, 0100, 0010

1, 2 L22-series
d = 2 ⇔ ?,

0001, 1100, 1010 or {0101, 0011} ⊂ C,
0101, 0011 or {1100, 1010} ⊂ C

L23+ 4
1100, 1010, 1001

all (4) none 2 L7-series convex ⇔ C = ∆(C)
0110, 0101, 0011

L24 36
1110, 1001 1000, 0100

1100, 1010, 0110 2, 3
L8-series d = 3 ⇔ no

0101, 0011 0010, 0001 d=3 codes optional codewords

L25 168 1110, 1011, 0101
0100, 0001 1000, 0010, 1100

2 L22-series
1010 1001, 0110, 0011

L26 407 1110, 1011, 0111
0010, 1010 1000, 0100, 0001

2 L22-series
0110, 0011 1100, 1001, 0101

L27+ 85
1110, 1101

all (10) none 3 d=3 codes convex ⇔ C = ∆(C)
1011, 0111

L28◦ 0 1111 none all (14) 1, 2 L22-series d = 2 ⇔ ?

Table 2: Convexity and dimension for codes on n ≤ 4 neurons. For each simplicial complex ∆, labeled as
in Figure 6, the second column is the number of non-convex codes C such that ∆(C) = ∆, up to permutation
equivalence and including the all-zeros codeword, while the sixth column d(C) displays the possible minimal
embedding dimensions for convex codes only. The third column lists the codewords corresponding to facets of
∆; these are automatically included in any code with simplicial complex ∆. The fourth columns gives all other
non-empty mandatory codewords – that is, elements of Cmin(∆) that are not facets of ∆. Optional codewords are
elements of ∆ whose presence or absence does not affect whether or not a code is convex, though they may alter
the minimal embedding dimension d(C). When all non-maximal codewords are mandatory or all are optional,
their total number is given in parentheses. The picture column indicates the groupings used for the convex
realizations in Figure 7. In the notes column, ? indicates that the set of optional codewords in C can not form a
2-chain. A collection of codewords forms a chain if we can completely order the respective sets by containment
– so {1111, 1100, 1000} is a chain, but {1110, 1000, 1101} is not. A collection of codewords can form a 2-chain if
it can be partitioned into two sets (possibly empty) which are both chains. + and ◦ are the same as in Figure 6.
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Figure 7: Convex realizations for codes on n ≤ 4 neurons. Each convex set Ui, for neuron i, is
the union of all regions corresponding to codewords containing i (see also Figure 4). Note that each
picture displays regions corresponding to mandatory codewords in various shades of gray, while optional
codewords are in blue. A single picture thus shows convex realizations for all convex codes corresponding
to the same simplicial complex, as blue regions can be included or excluded without affecting convexity.
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S2 Alexander duality, the Stanley-Reisner ideal, and Hochster’s formula

For any simplicial complex ∆ on vertex set [n], the Alexander dual is the related simplicial complex:

∆∗
def
= {τ̄ | τ /∈ ∆},

where τ̄ = [n] \ τ denotes the complement of τ in [n]. Note that (∆∗)∗ = ∆. Any ∆ also has an
associated ideal known as the Stanley-Reisner ideal :

I∆
def
=

{∏
i∈σ

xi | σ /∈ ∆

}
.

Alexander duality relates the reduced homology of a simplicial complex to the cohomology of its
Alexander dual,

H̃i(∆
∗,k) ∼= H̃n−i−3(∆,k),

where k is a field. Meanwhile, Hochster’s formula relates the nonzero Betti numbers from a minimal
free resolution of the Stanley-Reisner ideal to the reduced cohomology of restricted simplicial complexes
[9]. Specifically,

βi−1,σ(I∆) = βi,σ(S/I∆) = dim H̃ |σ|−i−1(∆|σ,k), (6)

where S = k[x1, . . . , xn] and the βi,σs refer always to Betti numbers for a minimal free resolution.4

The following link lemma can be used to derive a dual version of Hochster’s formula, similar to the
version in [9, Corollary 1.40]. The dual formulation is more useful to us, as it allows us to compute the
dimensions of all non-trivial homology groups for all links, Lkσ(∆), from a single free resolution.

Lemma 6.4. Lkσ(∆) = (∆∗|σ̄)∗.

Proof. First, observe that ∆∗|σ̄ = {τ | τ ⊂ σ̄ and τ ∈ ∆∗}. The dual is thus (∆∗|σ̄)∗ = {σ̄ \ τ | τ ⊂
σ̄ and τ 6∈ ∆∗} = {ω | ω ⊂ σ̄ and σ̄ \ ω /∈ ∆∗} = {ω | ω ∩ σ = ∅ and σ ∪ ω ∈ ∆} = Lkσ(∆).

Lemma 6.5 (Hochster’s formula, dual version). dim H̃i(Lkσ(∆),k) = βi+2,σ̄(S/I∆∗).

Proof. Using (in order) Lemma 6.4, Alexander duality, and the original version of Hochster’s for-
mula (6), we obtain:

dim H̃i(Lkσ(∆),k) = dim H̃i((∆
∗|σ̄)∗,k) = dim H̃ |σ̄|−i−3(∆∗|σ̄,k) = βi+2,σ̄(S/I∆∗).

It is important to note that if σ is a facet of ∆, then Lkσ(∆) = ∅, which is non-contractible due
to nontrivial homology in degree −1. Hochster’s formula thus detects facets of ∆ via the nonzero
Betti numbers β1,σ̄, as these correspond to σ such that dim H̃−1(Lkσ(∆),k) > 0. Note also that
Lk∅(∆) = ∆, so if ∆ itself has nontrivial reduced homology in degree i, this will be detected as a
nonzero Betti number βi+2,[n], where σ̄ = [n] is the complement of σ = ∅.

S3 Bounds on the minimal embedding dimension of convex codes

We now turn to the problem of determining the minimal embedding dimension d(C) of a convex code C.
There is no general method for computing d(C), though bounds can be obtained from the information
present in the simplicial complex ∆(C). In this section, we review known results on d-representability
and Helly’s theorem, and apply them to obtain lower bounds on d(C). We also obtain an additional
bound on d(C) from the Fractional Helly theorem, and examine how it compares to the Helly’s theorem
bound.

4See [9, Chapter 1] for more details about free resolutions of monomial ideals.
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Our dimension bounds all rely solely on features of the code captured by ∆(C), and do not take
into account the finer structure of the code. Nevertheless, the presence or absence of a single codeword
can have a significant effect on d(C), even if the simplicial complex ∆ = ∆(C) is fixed (e.g., see Table 2
for L8, L14, L16, etc.). It remains an open question how to use this additional information in order to
improve the bounds on d(C).

Embedding dimension and d-representability

The problem of determining d(C) for a convex code C has not been directly addressed in the literature.
However, the related problem of determining when a simplicial complex ∆ can be realized as the nerve
N (U) of a cover U has received considerable attention (see [13, 19] and references therein). A simplicial
complex ∆ is said to be d-representable if there exists a collection of convex (not necessarily open) sets
U = {U1, . . . , Un}, with Ui ⊂ Rd, such that ∆ = N (U). Note that for such a U , the corresponding code
C(U) need not be equal to ∆, though it is always true that ∆(C(U)) = ∆.

While d-representability of ∆(C) does not tell us the value of d(C), it does provide a lower bound.
This motivates us to define the nerve dimension dN (C) of a code C to be the minimal d such that ∆(C)
is d-representable. It immediately follows that

d(C) ≥ dN (C),

because any embedding of C in Rd(C) via a collection of convex open sets U is also a realization of ∆(C)
as the nerve N (U). Unfortunately, dN (C) may be difficult to compute in general. In contrast, we can
obtain a lower bound from Helly’s theorem that is simple to read off from the structure of ∆(C).

Bounds from Helly’s theorem

One common tool used to address d-representability of simplicial complexes is Helly’s theorem.

Lemma 6.6 (Helly’s theorem [20]). Let U = {U1, . . . , Un} be a collection of convex open sets in Rd.
If for every d + 1 sets in U , the intersection is non-empty, then the full intersection

⋂n
i=1 Ui is also

non-empty.

Helly’s theorem implies that if ∆ is d-representable and ∆ contains all possible d-dimensional faces,
then ∆ must be the full simplex. On the other hand, if ∆ contains all possible d-dimensional faces
but is not the full simplex, then it is not d-representable. This immediately yields examples where the
presence or absence of a single codeword can have a large effect on d(C).

Proposition 6.7. Let C be a code on n neurons, and suppose that for some k with 1 ≤ k < n, ∆(C)
contains all k-dimensional faces. If 11 · · · 1 ∈ C, then d(C) ≤ 2; otherwise, d(C) > k.

Proof. In the first case, where 11 · · · 1 ∈ C, the fact that C is convex and d(C) ≤ 2 follows from
Lemma 2.5. For the second case, where 11 · · · 1 /∈ C, suppose C is realizable as a convex code in Rd for
some d ≤ k, so that C = C(U) for some collection of convex open sets U = {U1, U2, . . . , Un}, with each
Ui ⊂ Rd. Since, by hypothesis, ∆(C) contains all k-dimensional faces, it also contains all d-dimensional
faces, and so the intersection of every collection of d + 1 subsets in U is non-empty. Thus, by Helly’s
Theorem, the full intersection of all sets in U is non-empty, and so 11 · · · 1 ∈ C. This contradicts the
fact that 11 · · · 1 /∈ C; hence, we must have d(C) > k.

We can also apply Helly’s theorem to every subcollection {Ui1 , . . . , Uim} ⊂ U , or equivalently
to the induced subcomplex on elements i1, . . . , im, to see that if all the d-dimensional faces of this
subcomplex are present, then the top-dimensional face must also be present in order for ∆ to be d-
representable. This leads us to the following definitions. A simplicial complex is said to contain an
induced k-dimensional simplicial hole if it contains k + 1 vertices such that the induced subcomplex
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on those vertices is isomorphic to a hollow simplex (see Section 1.2, and [13]). We define the Helly
dimension5 of C, denoted dH(C), to be the dimension of the largest induced simplicial hole of ∆(C):

dH(C) def
= max{k | ∆(C) has a k-dimensional induced simplicial hole}. (7)

Clearly, dH(C) ≤ d(C).

Bounds from the Fractional Helly theorem

The Fractional Helly theorem is a well-known extension of Helly’s theorem that provides new bounds
on d(C), though they are not always better.

Lemma 6.8 (Fractional Helly theorem6, Theorem 6.7 of [13]). Let α > 0, and U = {U1, U2, . . . , Un}
be a collection of convex open sets in Rd such that at least α

(
n
d+1

)
of the (d+1)-tuples of sets in U have

non-empty intersections. Then there exists σ ⊆ [n] such that |σ| > α
d+1n, and

⋂
i∈σ Ui is non-empty.

The Fractional Helly theorem indicates that if a code C can be embedded in Rd, and the simplicial
complex ∆(C) has many d-dimensional faces, then ∆(C) must have some sufficiently high-dimensional
face. The following lemma quantifies these observations in our context.

Lemma 6.9. Let ∆ be a k-dimensional simplicial complex on n elements, and let fd(∆) be the number
of d-dimensional faces in ∆ for 1 ≤ d < n. If ∆ is d-representable, then k + 1 > fd(∆)/

(
n−1
d

)
.

Proof. By definition of d-representable, we have ∆ = N (U) for some U = {U1, U2, . . . , Un}, where each
Ui ⊂ Rd. Since each d-dimensional face of ∆ corresponds to an intersection of (d + 1) of the Uis,
we have that fd(∆(C)) of the (d + 1)-tuples have non-empty intersections. By the Fractional Helly

theorem, there is some σ ⊆ [n] with |σ| > α
d+1n such that

⋂
i∈σ Ui 6= ∅, where α = fd(∆(C))

( n
d+1)

. Since ∆(C)

is k-dimensional, it follows that |σ| ≤ k + 1, and so k + 1 > α
d+1n = fd(∆(C))/

(
n−1
d

)
.

This leads us to the following definition. Let C be a code on n neurons with a k-dimensional
simplicial complex ∆(C), and let fd(∆(C)) be the number of d-dimensional faces in ∆(C) for 1 ≤ d < n.
The Fractional Helly dimension dFH(C) of C is given by:

dFH(C) def
= 1 + max

{
d
∣∣∣ fd(∆(C)) ≥ (k + 1) ·

(
n− 1

d

)
, 1 ≤ d < n

}
. (8)

Further dimension bounds based on the f -vector {fi(∆)} can be obtained from the results in [22, 23].

Comparison of dimension bounds

How do the Helly and Fractional Helly dimensions dH(C) and dFH(C) compare to each other and to
the nerve dimension dN (C)? First, note that although a simplicial complex ∆ cannot be represented in
any dimension less than its Helly dimension dH(∆), Helly’s theorem does not guarantee that ∆ is dH -
representable. Thus we have dH(C) ≤ dN (C) ≤ d(C) . By the same reasoning, dFH(C) ≤ dN (C) ≤ d(C) .
The next examples show that we can have dH(C) < dN (C) and dFH(C) < dN (C); i.e., the nerve
dimension can provide a strictly stronger lower bound.

5The closely-related notion of Helly number for a simplicial complex was previously introduced in the literature.
Specifically, the Helly number of ∆(C) is dH(C) + 1.

6In [21], Kalai gave a sharp version of Theorem 6.8: If α
(

n
d+1

)
of the (d+ 1)-tuples have non-empty intersections, then

there exists σ with |σ| > (1 − (1 − α)1/(d+1))n such that the corresponding intersection is non-empty. The precise value
of β for which |σ| > βn is not essential to the results in the remainder of our paper. Therefore, for ease of notation and
computation, we prefer β = α/(d+ 1) as in Theorem 6.8, while keeping in mind that a tighter bound exists.
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Figure 8: (a) A simplicial complex ∆, with facets 125, 235, 345, 145. (b) A convex realization of ∆ in
R2.

Example 6.10. Consider any code C such that ∆(C) is the simplicial complex in Figure 8a. We obtain
dH(C) = 1, because the two maximal induced simplicial holes of ∆(C) arise from the subsets {1, 3}
and {2, 4}, which both have dimension 1. Although ∆(C) is contractible, the induced subcomplex on
{1, 2, 3, 4} is a 1-cycle, so ∆(C) is at best 2-representable and dN (C) ≥ 2. Thus, dN (C) > dH(C).
Figure 8b shows that the minimal embedding dimensions is, in fact, d(C) = 2.

Our final example shows not only that we can have dFH(C) < dN (C), but also that it is possible
for dFH(C) < dH(C) or for dH(C) < dFH(C), depending on the code. So although dN (C) is always the
strongest of the three bounds, neither of the easier-to-compute dH(C) and dFH(C) bounds is universally
stronger than the other. In other words, all we can say in general is that the minimal embedding
dimension satisfies:

d(C) ≥ dN (C) ≥ max{dH(C), dFH(C)}. (9)

a b

Figure 9: (a) The simplicial complex of code C1 from Example 6.11. (b) The simplicial complex of
code C2 from Example 6.11, for r = 4.

Example 6.11. (a) Let n = 3, and consider the code C1 = {000, 110, 101, 011}, whose simplicial
complex ∆(C1) is the empty triangle, as shown in Figure 9a. This is a hollow 2-simplex, so we have
dH(C1) = 2 and dN (C1) = 2. In contrast, a quick computation yields dFH(C1) = 1, and so dH(C1) =
dN (C1) > dFH(C1).

(b) Let n = 2r, where r ≥ 4, and suppose ∆(C2) = Kr,r, the complete bipartite graph on 2r vertices,
as shown in Figure 9b. This graph contains no triangles, so the largest induced simplicial holes result
from missing edges in ∆(C2), which have dimension 1. Thus, dH(C2) = 1. To compute dFH(C2), we
first find the f -vector of ∆(C2). Observe that f0(∆(C2)) = n, f1(∆(C2)) = r2, and fi(∆(C2)) = 0 for
2 ≤ i < n. Note also that k = 1, since ∆(C2) is 1-dimensional. Since fd(∆(C2)) = 0 for d ≥ 2, the
inequality fd(∆(C2)) ≥ (k + 1) ·

(
n−1
d

)
is not satisfied for these values of d. However, we have

f1(∆(C2)) = r2 ≥ 2(2r − 1) = 2(n− 1) = (k + 1) ·
(
n− 1

1

)
,

with the inequality being valid for all r ≥ 4. Thus, directly from the definition, we find dFH(C2) = 2.
Hence, dFH(C2) > dH(C2).
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