
Obstructions to convexity in neural codes

Caitlin Lienkaemper∗, Anne Shiu†, and Zev Woodstock‡

September 10, 2015

Abstract

How does the brain encode spatial structure? One way is through hippocampal neurons
called place cells, which become associated to convex regions of space known as their receptive
fields: each place cell fires at a high rate precisely when the animal is in the receptive field. The
firing patterns of multiple place cells form what is known as a convex neural code. How can we
tell when a neural code is convex? To address this question, Giusti and Itskov identified a local
obstruction, defined via the topology of a code’s simplicial complex, and proved that convex
neural codes have no local obstructions. Curto et al. proved the converse for all neural codes on
at most four neurons. Via a counterexample on five neurons, we show that this converse is false
in general. Additionally, we classify all codes on five neurons with no local obstructions. This
classification is enabled by our enumeration of connected simplicial complexes on 5 vertices up
to isomorphism. Finally, we examine how local obstructions are related to maximal codewords
(maximal sets of neurons that co-fire). Curto et al. proved that a code has no local obstructions
if and only if it contains certain “mandatory” intersections of maximal codewords. We give a
new criterion for an intersection of maximal codewords to be non-mandatory, and prove that it
classifies all such non-mandatory codewords for codes on up to 5 neurons.

Keywords: neural code, place cell, convex, good cover, simplicial complex, homology

1 Introduction

The brain’s ability to navigate within and represent the physical world is fundamental to our
everyday experience and ability to function. How does the brain accomplish this? For their
work shedding light on this question, neuroscientists John O’Keefe, May Britt Moser, and
Edvard Moser won the 2014 Nobel Prize in Physiology and Medicine. Their work led to the
discovery of place cells, grid cells, and head direction cells, all of which take part in rodents’
and other animals’ mechanisms for representing, navigating through, and forming memories of
their environments.

This paper focuses on place cells, which are hippocampal neurons which become associated
to regions of the environment known as their receptive fields or place fields. When an animal is
located in a place cell’s receptive field, the place cell fires at a higher rate than when the animal
is outside the place field. The firing patterns of a collection of place cells describe an animal’s
position within its environment. These receptive fields have been experimentally observed to be
approximately convex regions of space. Convex codes are those neural codes (firing patterns)
that can arise from the activity of place cells with convex receptive fields.

∗Corresponding author; Department of Mathematics, Harvey Mudd College, 301 Platt Boulevard, Claremont CA
91711-5901, USA; clienkaemper@g.hmc.edu
†Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, Texas 77843–3368, USA;

annejls@math.tamu.edu
‡Department of Mathematics and Statistics, James Madison University, Roop Hall 305, MSC 1911, Harrisonburg,

Virginia 22807, USA; woodstzc@dukes.jmu.edu

1

Which neural codes are convex? What are signatures of convexity or non-convexity? Curto
et al. [2, 3] and Giusti and Itskov [4] addressed these questions using combinatorial topology
and commutative algebra, and gave complete answers for codes on up to 4 neurons. Curto et al.
achieved this classification by organizing neural codes according to their simplicial complexes,
and, additionally, by focusing on local obstructions to convexity. Earlier, Giusti and Itskov
had introduced this concept and proved that codes with local obstructions are necessarily non-
convex. Curto et al. proved that local obstructions have the following interpretation: for each
simplicial complex ∆, there is a set of “mandatory” codewords whose presence in a code (whose
simplicial complex is ∆) is required to avoid local obstructions [2]. Therefore, a code must
contain all its mandatory codewords to be convex. Moreover, the mandatory codewords are
necessarily intersections of maximal codewords. This motivates the following questions:

Question 1.1. Is every code which has no local obstructions convex?

Question 1.2. Is every intersection of maximal codewords a mandatory codeword?

Question 1.3. For codes on 5 neurons, which have local obstructions? Which are convex?

Our work addresses all 3 questions.
In a preliminary version of [2], the answer to Question 1.1 was conjectured to be “yes”, and

this was verified for codes on up to 4 neurons. Moreover, this was the main open problem in
this subject. Here we demonstrate that even for codes on 5 neurons, the answer is in fact “no”:
Theorem 3.1 gives the first example of a non-convex code with no local obstructions.

For Question 1.2, again the first negative answer appears in codes on 5 neurons [2]. Here
we give a sufficient criterion for an intersection of maximal codewords to be non-mandatory
(Theorem 5.2). Furthermore, our criterion classifies all such non-mandatory codewords for
codes on 5 neurons. In other words, our result shows that codes with no local obstructions on
at most 5 neurons are precisely those codes that contain all intersections of maximal codewords
together with those codes that satisfy our new criterion.

Finally, we completely answer the first part of Question 1.3 by first enumerating the 157
connected simplicial complexes on 5 vertices, and then determining for each simplicial complex
which codewords are mandatory. Here we recall that a code has a local obstruction if and only
if it is missing a mandatory codeword. Our enumeration is therefore an important step toward
answering the second part of the Question 1.3, which we leave for future work.

2 Background

In this section, we introduce our assumptions, definitions, and notation. We approximate neural
activity as binary: under this model, neurons are either firing or they are not. We encode the
combinatorial data generated by the firing patterns of place cells as a neural code (Definition 2.1).
We index the neurons with the integers {1, . . . , n} =: [n].

2.1 Neural codes

Biologically, a codeword corresponds to a set of neurons which fire together while no other
neurons fire, and a neural code describes which groups of neurons are observed firing together:

Definition 2.1. A neural code C on n neurons is a set of subsets of [n] (called codewords), i.e.
C ⊆ 2[n]. A maximal codeword in C is a codeword that is not properly contained in any other
codeword in C.

Definition 2.2. For a neural code C on n neurons, a collection U = {U1, U2, . . . , Un} of subsets
of a set X realizes C if a codeword σ is in C if and only if

(⋂
i∈σ Ui

)
\
⋃
i/∈σ Ui is nonempty1.

1We use the usual convention: the empty intersection is X, and the empty union is the empty set. Also, in this
paper we make the simplifying assumption that X)

⋃
i∈[n] Ui, i.e. the empty set is a codeword in every code.

2

Definition 2.3. A neural code is:

1. intersection-complete if it is closed under taking intersections.

2. max-intersection-complete if it is closed under taking intersections of maximal codewords.

3. a good-cover code if it can be realized by a good cover U = {U1, U2, . . . , Un} of some set
X ⊆ Rd. (Recall that U is a good cover of X if the Ui’s are contractible open sets that
cover X and each intersection Ui1 ∩ Ui2 ∩ · · · ∩ Uik is contractible or empty.)

4. convex if it can be realized by a collection of convex open sets U1, U2, . . . , Un ⊆ Rd. The
minimal embedding dimension of a code is the smallest value of d for which this is possible.

Example 2.4. Consider the code C = {{1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, ∅}. We will generally
write this as C = {12,13,23, 1, 2, 3}, where the maximal codewords are marked in bold. We
interpret this code to mean that each pair of neurons fires together and each neuron fires alone,
but all three neurons never fire at the same time. This code is intersection-complete, max-
intersection-complete, a good-cover code, and convex, as realized here:

Example 2.5. The simplest example of a neural code that is not convex is the three-neuron
code C = {12,13, ∅}. To see this, suppose C were convex; then there would exist convex open
sets U1, U2, and U3 such that U1 = U2 ∪ U3, and U2 ∩ U3 = ∅. We see that U2 and U3 would
form a disconnection of the open set U1, thus U1, U2, and U3 cannot all be convex open sets. In
fact, since we did not use convexity in this argument, but only connectedness, we have shown
that C is not a good-cover code either.

Remark 2.6. Intersection patterns of convex (and other types of) sets is a well-established
subject; for instance, see [6, 7, 9, 12] and the references therein. Nevertheless, the related
questions we consider here—which focus on all regions cut out by the convex sets, in addition
to which sets intersect—have only recently received attention.

2.2 Simplicial complexes

An abstract simplicial complex on n vertices is a set of subsets (faces) of [n] that is closed under
taking subsets2. That is, if ∆ is a simplicial complex, then σ ∈ ∆ and τ ⊂ σ implies τ ∈ ∆.
Facets are the faces of a simplicial complex that are maximal with respect to inclusion.

For a code C on n neurons, ∆(C) is the smallest simplicial complex on [n] that contains C:

∆(C) := {ω ⊆ [n] | ω ⊆ σ for some σ ∈ C} .

2Thus, the empty set is in every simplicial complex. However, for simplicity, we omit the empty set when listing
the faces of simplicial complexes arising in examples.

3

Note that two codes on n neurons have the same simplicial complex ∆ if and only if they have
the same maximal codewords (which are the facets of ∆). For a face σ ∈ ∆, the link of σ in ∆
is the simplicial complex

Lk∆(σ) := {ω ∈ ∆ | σ ∩ ω = ∅, σ ∪ ω ∈ ∆} .

Next, the restriction of ∆ to σ is the simplicial complex

∆|σ := {ω ∈ ∆ | ω ⊆ σ} .

Finally, a simplicial complex is contractible if its geometric realization is contractible.

2.3 Local obstructions

Here we introduce local obstructions, which prevent a code from being convex, and furthermore
prevent a code from being a good-cover code (Proposition 2.11).

Definition 2.7. Let C be a code on n neurons, let ∆ = ∆(C), and let U = {U1, U2, . . . , Un}
be any collection of open sets that realizes C. The code C has a local obstruction if there exist
disjoint, nonempty sets σ, τ ⊆ [n] such that:

1. (∩i∈σUi) ∩ Uj is nonempty for all j ∈ τ ,

2. (∩i∈σUi) ⊆ (∪j∈τUj), and

3. Lk∆|σ∪τ (σ) is not contractible.

It is important to note that the definition of local obstruction does not depend on the choice of
realization U . Indeed, this can be seen from the following characterization of codes with local
obstructions, due to Curto et al. [2, Theorem 1.6]:

Proposition 2.8 (Characterization of codes with local obstructions via maximal codewords).
A neural code C has a local obstruction if and only if some nonempty intersection of maximal
codewords is not in C and has a non-contractible link. More precisely, if M = {M1, ...,Mm} is
the set of maximal codewords of C, we say that C has a local obstruction if for some I ⊆ [m],

1. σ :=
⋂
i∈IMi is nonempty,

2. σ /∈ C, and

3. Lk∆(C)(σ) is not contractible.

Two observations follow immediately from Proposition 2.8. First, each simplicial complex
defines a set of mandatory codewords, those nonempty intersections of facets for which the link
is non-contractible:

Definition 2.9. A face σ of a simplicial complex ∆ is a mandatory codeword of ∆ if it is the
nonempty intersection of a set of facets of ∆ such that Lk∆(σ) is non-contractible.

Proposition 2.8 then states that a code C has no local obstructions if and only if

{mandatory codewords of ∆(C)} ⊆ C .

The second observation is that Proposition 2.8 gives a method for determining which codes
on n neurons have local obstructions. Namely, first enumerate all simplicial complexes on n
vertices, and then for each simplicial complex, determine the set of mandatory codewords.
Curto et al. completed this analysis for n ≤ 4 (and additionally proved that all such codes
without local obstructions are convex) [2], and we will complete the n = 5 case in Section 4.

Example 2.10. We revisit the non-convex three-neuron code C = {12,13, ∅} from Example 2.5.
Its simplicial complex is ∆(C) = {12,13, 1, 2, 3, ∅}, a path of length 2. Thus, the codeword 1
is an intersection of maximal codewords. However, Lk∆(C)(1) = {2,3, ∅}, which is a simplicial
complex consisting of two disconnected points. Thus, 1 is a mandatory codeword which is not
in C, so C has a local obstruction (by Proposition 2.8).

4

The following result summarizes prior results about the relationships among properties of
codes; part 1 is due to Giusti et al. [5], part 2 follows from the fact that every convex open
cover is a good cover, part 3 is due to Giusti and Itskov [4] (see also [2, Lemma 1.5]), and part 4
follows immediately from Proposition 2.8.

Proposition 2.11. Let C be a neural code.

1. If C is intersection-complete, then C is convex.

2. If C is convex, then C is a good-cover code.

3. If C is a good-cover code, then C has no local obstructions.

4. If C is max-intersection-complete, then C has no local obstructions.

Curto et al. showed that for all neural codes on up to 4 neurons, the converses of parts 2–4 of
Proposition 2.11 hold [2, §4]:

Proposition 2.12. Let C be a neural code on at most 4 neurons. The following are equivalent:

1. C is convex.

2. C is a good-cover code.

3. C has no local obstructions.

4. C is max-intersection-complete.

A preliminary version of [2] conjectured that the equivalence of parts 1-3 in Proposition 2.12
generalizes to codes on more than 4 neurons. In the next section, we give the first counterex-
ample to that conjecture, which shows that parts 1 and 2 are not equivalent (Theorem 3.1).
Furthermore, our counterexample uses only 5 neurons. It is still unknown whether parts 2 and
3 are equivalent.

Part 4 of Proposition 2.11 also can not be generalized to codes with more than 4 neurons [2].
Section 5 focuses on this gap: the intersections of facets that are not mandatory. More precisely,
we identify a criterion that guarantees that a max-intersection-incomplete code has no local
obstructions, and we prove that our criterion classifies all such codes on up to 5 neurons.

Example 2.13. Consider the following code:

C = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4, ∅} .

The nonempty intersections of maximal codewords are 13, 14, 23, 34, 45, 1, 3, and 4. Of these,
only 1 is missing from the code. We find that

Lk∆(C)(1) = {23,34,45, 2, 3, 4, 5, ∅} ,

which is a path of length 3 (thus, contractible). Hence, C has no local obstructions (Proposi-
tion 2.8), and, moreover, is a max-intersection-incomplete code with no local obstructions. In
the next section, we show that despite having no local obstructions, C is not convex.

3 A non-convex code with no local obstructions

Here we show that the code in Example 2.13 is non-convex despite having no local obstructions
(recall from Proposition 2.11 that good-cover codes have no local obstructions):

Theorem 3.1. The following code on 5 neurons:

C = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4, ∅} (1)

is a non-convex, good-cover code.

The proof of Theorem 3.1 requires the following lemma, which has proven useful in other
contexts as well (for instance, in distinguishing between minimal embedding dimension 2 vs. 3
among convex codes arising from the simplicial complex labeled by L24 in [2]).

5

Lemma 3.2. Let W1, W2, and W3 be convex open sets in Rn such that their intersection
is nonempty and is equal to all pairwise intersections: W1 ∩ W2 ∩ W3 = Wi ∩ Wj for all
1 ≤ i < j ≤ 3. Then, any line that intersects each of the Wi’s must intersect W1 ∩W2 ∩W3.

Proof. Let W123 := W1 ∩W2 ∩W3. Assume for contradiction that there exists a line L that
intersects each Wi \ W123 (for i = 1, 2, 3) but not W123. For i = 1, 2, 3, let pi be such an
intersection point on Wi, i.e. pi ∈ L ∩ (Wi \W123). By relabeling if necessary, we may assume
that p2 lies between p1 and p3 on the line L. Now let p123 ∈ W123; then p123 is not on L by
hypothesis. So, our points have a triangular structure:

Removing the convex open set W123 from the line segment p2p123 yields a smaller, closed line
segment (nonempty because it contains p2), namely, the line segment p2q := p2p123 \W123 for
some point q. We claim that the interior of the triangle 4p1p123q is contained in W1. Indeed,
any point in the interior resides on a line segment between p1 and a point (“above q”) on the
half-open line segment p123q\{q}, both of which are in the convex set W1. Similarly, the interior
of 4p3p123q is contained in W3.

Let L′ be the line parallel to L that passes through q. Note that on one side of q (the left
side in the figure), L′ passes through the triangle 4p1p123q, and on the other (right) side, L′

passes through 4p3p123q. Now q is in the open set W2, so there is an open neighborhood N of
q that is entirely in W2. Intersect N with L′ and pick from the “left” side a point l ∈ N ∩ L′
which is therefore in W1 ∩W2 = W123. Similarly, pick a “right” point r ∈ N ∩ L′ which is in
W123.

Now, q is on the line segment lr by construction, so q ∈ W123 by convexity, which contradicts
the construction of q. Thus we are done.

Proof of Theorem 3.1. Figure 1 demonstrates that the code (1) is a good-cover code.
Thus, it remains only to show that the code (1) is not convex. Assume for contradiction

that there exist convex, open sets U1, U2, . . . , U5 in Rd which realize the code C. Our strategy
is to derive a contradiction with Lemma 3.2.

For σ ⊆ [5], we define Uσ := ∩i∈σUi. Let p123 ∈ U123, p145 ∈ U145, and p2345 ∈ U2345; these
three points exist and are distinct, because 123, 134, and 2345 are maximal codewords of C (so,
U123 does not intersect U145, and so on). Also, we may assume that these three points are not
collinear: if they were, since the Uσ’s are open sets, one of the points can be perturbed slightly.

We claim that the line segment L = p123p145 intersects U134. Indeed, by convexity, L is
contained in U1, which is covered by U3 and U4, so L is too. The only way for L (a connected

6

Figure 1: A good-cover realization of the code (1). More precisely, Ui is the open set formed by the
union of all regions in the figure that are labeled by a codeword that contains i. For instance, U5

is the union of the rectangular regions 2345, 45, and 145. It is straightforward to check that {Ui}
forms a good cover.

set) to be covered by two open sets is if the sets overlap and this overlap intersects L, i.e.
L ∩ U3 ∩ U4 6= ∅. Note that L ∩ U3 ∩ U4 ⊆ U134, so we are done. Let p134 be a point in that
intersection; thus, p134 is in U134. So far, our points have the following configuration:

With Lemma 3.2 in mind, we define

W1 := U2 ∩ U3 , W2 := U3 ∩ U4 , W3 := U4 ∩ U5 .

First, note that the line extending the line segment L = p123p145 contains p123 ∈ W1,
p134 ∈W2, and p145 ∈W3. Also, we claim that this line does not intersect the triple-intersection.
Indeed, if the line contains a point r in the triple-intersection W1∩W2∩W3 = U2345, then r can
not be on the line segment L = p123p145, because L is in U1 and 2345 is a maximal codeword
of C. Also, r can not lie to the “left” of p123, because then p123 ∈ p134r ⊆ U5, which is a
contradiction (123 is a maximal codeword of C). Similarly, r can not lie to the “right” of p134.

So, to reach a contradiction with Lemma 3.2, we need only check that the sets Wi satisfy the
hypotheses of Lemma 3.2. First, as intersections of convex open sets, the Wi’s are convex open
sets in Rd. Next, the triple-intersection W1 ∩W2 ∩W3 = U2345 contains the point p2345, so is
nonempty. Finally, to show that the double-intersections coincide with the triple-intersection,
it suffices to show that Wi ∩Wj ⊆ U2345 for all 1 ≤ i < j ≤ 3 (⊇ holds by construction). First,
W1 ∩W3 = U2345 by construction. Next, W1 ∩W2 = U2 ∩ U3 ∩ U4 ⊆ U2345, because 2345 is the
only codeword in C that contains 234. Analogously, W2 ∩W3 ⊆ U2345, so we are done.

The proof of Theorem 3.1 shows that there is a “second-level” obstruction: for codes having
the same simplicial complex as the counterexample code (1), if the codeword 1 is not in the
code, then both 234 and 345 must be in the code (for the code to be convex). Here we see that
adding these 2 codewords does make the code convex:

7

Proposition 3.3. The following neural code (obtained by adding the codewords 234 and 345 to
the counterexample code (1)) is convex, and thus a good-cover code:

C = {2345, 123, 134, 145, 234, 345, 13, 14, 23, 34, 45, 3, 4, ∅} .

Proof. First note that the following is a convex realization for the code obtained by adding
codewords 234, 345, 2, and 5 to the code (1):

U2

U3

U4

U5

U1

Now it is straightforward to see that if U2 is replaced by U2 ∩U3 and U5 is replaced by U4 ∩U5,
then the resulting sets Ui would be a convex realization that verifies our claim.

Another way to make the counterexample code (1) convex, is simply to add the codeword 1,
which makes the code max-intersection-complete (Proposition 3.4 below). Then, from the proof
of Theorem 3.1, a line from p123 to p145 no longer must pass through a point p134 ∈ U134. Thus,
we do not have the same forced structure which we used to show that C is not convex.

Proposition 3.4. The following neural code (obtained by adding the codeword 1 to the coun-
terexample code (1)) is convex, and thus a good-cover code:

C = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 1, 3, 4, ∅} .

Proof. Consider the following construction. Let U2345 be an open cube in R3, centered at the
origin with sides parallel to the x, y, and z axes. Then let U23 be a rectangular prism created
by extending the cube in the positive x direction, let U34 be a rectangular prism created by
extending the cube in the positive y direction, and let U45 be a rectangular prism created by
extending the cube in the positive z direction. Then let U3 be the convex hull of U23 and U34, and
let U4 be the convex hull of U34 and U45. Thus, we have the codewords 2345, 23, 34, 45, 3, and
4. Now, pick points p23 ∈ U23, p34 ∈ U34, and p45 ∈ U45, and let U1 be an open ε-neighborhood
of the convex hull of p23, p34, and p45. This creates regions corresponding to the codewords 1,
123, 134, and 145. This also must create regions corresponding to the codewords 13 and 14,
since a line from 123 to 134 must pass through 13 and a line from 134 to 145 must pass through
14. It is straightforward to check that for ε sufficiently small, all the above codewords remain,
and no new ones are created. Therefore, this is a convex realization of the code.

4 Enumerating and classifying codes on 5 neurons

Previous classification of neural codes on up to 4 neurons as having local obstructions or not
was done by hand [2, 3]. We automated this process for codes on 5 neurons using SageMath [11]:
we first enumerated all simplicial complexes on 5 vertices, up to symmetry, and then computed
for each simplicial complex the list of mandatory codewords. We describe these procedures in
more detail below. Source code and the list of simplical complexes on five vertices and their
mandatory codewords can be found in the appendices.

For our list of simplicial complexes, we first used Nauty [8] to generate a list of all connected
simplicial complexes on up to 5 vertices, up to isomorphism. We worked only with connected
simplicial complexes because any disconnected simplicial complex on five neurons can be ex-
pressed as the disjoint union of simplicial complexes on fewer than five vertices, and has thus
been dealt with in previous work. We found that there is 1 connected simplicial complex on

8

each of 1 and 2 vertices, 3 connected simplicial complexes on 3 vertices, 14 connected simplicial
complexes on 4 four vertices, and 157 connected simplicial complexes on 5 vertices. The sim-
plicial complexes on up to 4 vertices appears in [2, Figure 4]. Including disconnected simplicial
complexes brings these counts to 1, 2, 5, 20, and 180, respectively, which agrees with the cor-
responding sequence in the on-line encyclopedia of integer sequences [10, A261005]. The next
term in this sequence tells us that there are 16,143 simplicial complexes on six vertices, up to
isomorphism. We do not produce a list of all simplicial complexes on six vertices, since we view
this as too large a data set to be useful at the moment.

Our algorithm for computing the mandatory codewords of a simplicial complex follows closely
the characterization local obstructions via maximal codewords (Proposition 2.8).

Algorithm 4.1 (Algorithm for computing mandatory codewords3).
Input: a simplicial complex ∆
Output: the list of mandatory codewords of ∆
Initialize: Mandatory:= ∅
Steps:

1. List all nonempty intersections of facets of ∆.

2. Compute the link of each nonempty intersection of facets.

3. Compute the reduced homology groups of each link.

4. For each reduced homology group which is nontrivial, add the corresponding intersection
of facets to Mandatory.

5. Return Mandatory.

5 The tree criterion for max-intersection-incomplete codes

Recall that mandatory codewords of a simplicial complex necessarily are intersections of facets,
but not vice-versa. In this section, we present a new criterion for an intersection of facets to be
non-mandatory (Theorem 5.2), and then show that this criterion characterizes all intersection-
incomplete codes without local obstructions for codes on at most 5 neurons (Theorem 5.7).
However, this criterion is insufficient for codes on 6 or more neurons (Example 5.9). We end
the section by showing that certain codes satisfying our new criterion are in fact convex with
minimal embedding dimension 1 (Proposition 5.12).

We begin with several definitions. First, recall that for a finite collectionW = {W1,W2, . . . ,Wn}
of subsets of a set X, the nerve of W is the simplicial complex that records the intersection
patterns among the sets:

N (W) := {I ⊆ [n] | ∩i∈IWi is nonempty} .

Next, for a face σ of a simplicial complex ∆, we letM∆(σ) denote the set of all facets (maximal
faces) of ∆ that contain σ. Thus, if ∆ = ∆(C) for some code C, then M∆(σ) is the set of all
maximal codewords of C that contain the codeword σ. Finally, we let L∆(σ) denote the set of
facets of Lk∆(σ); it is straightforward to see that these facets are obtained by removing σ from
the facets of ∆ that contain σ:

L∆(σ) = {(M \ σ) |M ∈M∆(σ)} .

We will need the following version of the nerve lemma [1, Theorem 6 and Remark 7]:

Lemma 5.1. Let D = (∆i)i∈I be a family of sub-complexes of a connected simplicial complex
∆ for which:

(1) ∆ =
⋃
i∈I

∆i, and

3Eventually, Algorithm 4.1 will fail (for some simplicial complexes), because having trivial homology groups does
not imply contractibility in general, but does for simplicial complexes on few vertices.

9

(2) every finite nonempty intersection ∆i1 ∩∆i2 ∩ · · · ∩∆ik is contractible.

Then ∆ is homotopy-equivalent to the nerve of the ∆i’s: ∆ ' N (D).

We apply Lemma 5.1 in the following setting: the simplicial complex is a link Lk∆(σ) and D
is L∆(σ), the facets of the link. Clearly the union of the facets is equal to the link, so condition
(1) of the lemma holds. Also, nonempty intersections of any faces of a simplicial complex are
themselves faces, which are contractible, so (2) holds. Therefore, the lemma implies that:

Lk∆(σ) ' N (L∆(σ)) . (2)

Theorem 5.2 (Tree criterion for mandatory codewords). Let ∆ be a simplicial complex, and
let σ ∈ ∆ be a nonempty intersection of facets of ∆. If the nerve N (L∆(σ)) is a tree graph,
then σ is not a mandatory codeword of ∆, i.e. Lk∆(σ) is contractible.

Proof. The theorem follows directly from the definition of mandatory (Definition 2.9), the
homotopy-equivalence (2), and the fact that tree graphs are contractible.

Remark 5.3. The nerve N (L∆(σ)) is a tree graph if and only if all triple-wise intersections
among facets of ∆ that contain σ (i.e. elements of M∆(σ)) are equal to σ.

What Theorem 5.2 says is that in light of the characterization of local obstructions in terms
of intersections of facets (Proposition 2.8), those codewords that satisfy the tree criterion do not
generate local obstructions. We rephrase this in Corollary 5.5 below via the following definition:

Definition 5.4. A code C on n neurons satisfies the tree criterion if for every codeword σ ⊆ [n]
that is not in C and is a nonempty intersection of maximal codewords of C, the nerve N (L∆(σ))
is a tree graph.

Corollary 5.5. If a neural code C satisfies the tree criterion, then C has no local obstructions.

Example 5.6. Returning again to our counterexample code (1), recall from Example 2.13 that
1 is the only nonempty intersection of maximal codewords that is not in the code, and that its
link Lk∆(C)(1) = {23,34,45, 2, 3, 4, 5} is a path of length 3. Therefore, the set of facets of the
link is L∆(σ) = {23, 34, 45}, and hence the nerve N (L∆(σ)) is a path of length 2. We conclude
that the code satisfies the tree criterion. (We already knew that it has no local obstructions.)

5.1 Using the tree criterion to classify codes with no local obstructions

Max-intersection-complete codes (Definition 2.3) vacuously satisfy the tree criterion (by Propo-
sition 2.8). Also, recall that max-intersection-complete codes on at most 4 neurons are precisely
the codes with no local obstructions; in fact, they are convex (by Proposition 2.12). Thus, the
converse of Corollary 5.5 is true for up to 4 neurons. In fact, our next result extends this converse
to 5 neurons. However, this converse is false for codes on six or more neurons (Example 5.9).

Theorem 5.7 (Tree criterion characterization of codes with no local obstructions on up to 5
neurons). For a code C on at most 5 neurons, C has no local obstructions if and only if C satisfies
the tree criterion.

Proof of Theorem 5.7. As explained above, the ⇐ direction of Theorem 5.7 is Corollary 5.5.
Our proof of the ⇒ direction requires the next lemma, due to Curto et al. [2, Lemma 2.11
and subsequent discussion]. Recall that a simplicial complex ∆ on [n] is a cone if there exists
i ∈ [n] (called a cone point) such that every nonempty facet of ∆ contains i. For instance, the
simplicial complex {{123}, {34}} is a cone with cone point 3, whereas the simplicial complex
{{123}, {34}, {45}} is not a cone, since there is no point contained in every facet.

Lemma 5.8. A simplicial complex Γ is not a cone if and only if there exists a simplicial complex
∆ and a face σ of ∆ such that (1) σ is an intersection of facets of ∆ and (2) Lk∆(σ) = Γ.

10

Recall that the ⇐ direction is Corollary 5.5. For the ⇒ direction, let C be a code on n
neurons, where n ≤ 5, that has no local obstructions. Let σ ⊆ [n] be a codeword that is not in
C and is a nonempty intersection of maximal codewords of C. Then Lk∆(C)(σ) is (1) a simplicial
complex on at most 4 vertices (because σ is nonempty), (2) contractible (by Proposition 2.8: C
has no local obstructions) and thus nonempty, and (3) not a cone (by Lemma 5.8). Among the
28 simplicial complexes on up to 4 vertices (depicted in [2, Figure 4]), only one is a contractible
non-cone: P3, the path of length 3. Thus, Lk∆(C)(σ) ∼= P2 (the path of length 2), which is a
tree graph. Hence, by definition, C satisfies the tree criterion.

Example 5.9 (A convex code that the tree criterion misses). Let

C = {124, 134, 145, 156, 14, 15, ∅} ,

so ∆(C) is the cone, with cone point 1, over the following graph:

2

3
4 5 6

We claim that C has no local obstructions. Indeed, the codeword 1 is the unique nonempty
intersection of maximal codewords of C that is not in C, and Lk∆(C)(1) is the above tree graph,
which is contractible.

To complete the proof, we now show that C does not satisfy the tree criterion. To see this,
note that σ = {1} is not in C and is the nonempty intersection of all maximal codewords of C.
However, the nerve N

(
L∆(C)(σ)

)
is the following non-tree simplicial complex:

34

45
24 56

This shows that C fails to satisfy the tree criterion.

5.2 Proving convexity for a special case when the nerve is a path

Here we show that a certain family of codes that satisfy the tree criterion is in fact convex
with minimal embedding dimension 1. The corresponding simplicial complexes only contain
one non-mandatory codeword, and the corresponding nerve is the simplest type of tree: a path.
These simplicial complexes include cones over a path:

Definition 5.10. Let M denote the set of facets of a simplicial complex ∆. We say that ∆ is
a coned path if:

1. the intersection of all facets is nonempty: σ :=
⋂

M∈M
M 6= ∅, and

2. the nerve N (L∆(σ)) is a path graph (of length at least 1).

Next we will show that for each simplicial complex, there is a unique minimal code with no
local obstructions, and then for the case of coned paths, prove that these minimal codes are
convex with minimal embedding 1 (Proposition 5.12). To introduce minimal codes, recall from
Proposition 2.8 that for a given simplicial complex ∆, a code C with ∆(C) = ∆ has no local
obstructions if and only if it contains the following code:

Cmin(∆) := {mandatory codewords of ∆(C)} ∪ {facets of ∆} ∪ {∅} .

In other words, Cmin(∆) is the minimal code with simplicial complex ∆ that has no local
obstructions. For instance, our counterexample code (1) is the minimal code for its simplicial
complex. Now we determine this minimal code for the case of a coned path:

11

Lemma 5.11. Let σ be the (nonempty) intersection of all the facets of a coned path ∆. Then:

1. there exists an ordering of the facets of Lk∆(σ):

L∆(σ) = {N1, N2, . . . , Nm}

such that Ni ∩ Ni+1 =: τi is nonempty and all other pairwise intersections are empty:
Ni ∩Nj = ∅ if |i− j| ≥ 2, and

2. {mandatory codewords of ∆} = {σ ∪ τi | 1 ≤ i ≤ m− 1}.

Proof. Part 1 follows immediately from the fact that the nerve N (L(σ)) is a path graph. For
part 2, we begin by noting that M = {σ ∪Ni | 1 ≤ i ≤ m} is the set of facets of ∆. By part 1,
the only nonempty intersections of facets are σ and the σ ∪ τi’s, and σ is non-mandatory by the
tree criterion (Theorem 5.2). So, we need only show that Lk∆(σ ∪ τi) is non-contractible (by
Proposition 2.8). Indeed, we will see that this link is disconnected. By part 1, the only facets
that contain σ ∪ τi are σ ∪Ni and σ ∪Ni+1, and by definition neither facet contains the other.
Thus Lk∆(σ∪ τi) is the disjoint union of two full simplices: one on Ni \ τi and one on Ni+1 \ τi.,
and thus is disconnected.

Proposition 5.12. If ∆ is a coned path, then the minimal code Cmin(∆) is convex with minimal
embedding dimension 1.

Proof. Let Ni be as in Lemma 5.11, so that M = {σ ∪ N1, σ ∪ N2, . . . , σ ∪ Nm} is the set of
facets of ∆. Also, let τi = Ni ∩ Ni+1 for 1 ≤ i ≤ m − 1. Then, Lemma 5.11 implies that
Cmin(∆) = {σ ∪ τi | 1 ≤ i ≤ m− 1} ∪M∪ {∅}. We show that this code is convex with minimal
embedding dimension 1 via a convex realization in R so that the region for σ∪N1 is the interval
(0, 1), the σ ∪ τ1 region is [1, 2], the σ ∪N2 region is (2, 3), the region for σ ∪ τ2 is [3, 4], and so
on. More precisely, the receptive fields Uj for each neuron j are:

Uj =

(0, 2m− 1) if j ∈ σ
(2i− 2, 2i+ 1) if j ∈ τi, for some 1 ≤ i ≤ m− 1

(2i− 2, 2i− 1) if j ∈
(
Ni \

(⋃m−1
k=1 τk

))
, for some 1 ≤ i ≤ m .

It is straightforward to check that this code has the regions described above.

Example 5.13. Let ∆ be the cone, with cone point 1, over the following simplicial complex:

2 3 4

5

6

Then ∆ is a coned path; indeed, the intersection of all facets of ∆ is {1}, and the nerveN (L∆(σ))
is the following path of length 2:

23 345 56

Following the proof of Proposition 5.12, the minimal code is Cmin(∆) = {123, 1345, 156, 13, 15, ∅},
and a 1-dimensional convex realization is as follows, where the open intervals Ui are depicted
above the real line for clarity:

R
U6

U5

U4

U3

U2

U1

From left to right, the nonempty codewords are 123, 13, 1345, 15, and 156.

12

6 Discussion

We resolved the question of whether all neural codes with no local obstructions are convex.
Nonetheless, several related questions remain open. Are all neural codes with no local obstruc-
tions good-cover codes? Are all max-intersection-complete codes (i.e. closed under maximal
intersection) convex? Even for codes on 5 neurons, these questions are unresolved. Our enu-
meration of codes on 5 neurons without local obstructions is a step toward attacking these
problems.

Additional questions arise from our counterexample code. First, is there another code with
the same simplicial complex as the counterexample code that also is non-convex despite having
no local obstructions? We generalize this question as follows. We defined the minimal code on
a simplicial complex ∆ to be the smallest neural code C with no local obstructions such that
∆(C) = ∆. (We could also consider a minimal convex code with a given simplicial complex,
although this is not, in general, unique: recall the codes discussed at the end of Section 3.) If
the minimal code on a simplicial complex is convex, are all codes on the same simplicial complex
that contain the minimal code convex? If true, this would reduce the classification of convex
codes to the determination of the minimal convex codes on each simplicial complex.

Finally, we pose some questions that arise from our counterexample code. First, our proof
that this code is non-convex hinged upon a forced two-dimensional structure. Similar techniques
have helped us to draw receptive fields for other five-neuron codes which permitted exclusion
of an intersection of maximal codewords. Can we use these techniques to draw place fields in
general, or to determine bounds on minimal embedding dimension?

Additionally, can we characterize a new obstruction such that neural codes are convex if and
only if they do not have this new obstruction? Can we give an algebraic signature for such an
obstruction (see [2])? Whatever the signature of our new obstruction is, it is clear that it cannot
have as simple an interpretation as the local obstruction. While a local obstruction specifies a
set of missing codewords, all of which must be added to the code to resolve the obstruction, the
obstruction to convexity present in our counterexample code has a more complicated structure:
adding either the codeword 1 or both the codewords 234 and 345 makes the code convex.
One form this new obstruction could take is the requirement that convex codes either be max-
intersection-complete or satisfy some other condition, yet to be determined.

Acknowledgments

CL and ZW conducted this research as part of the NSF-funded REU in the Department of Math-
ematics at Texas A&M University (DMS-1460766), in which AS served as mentor. The authors
benefited from guidance from Lauren Grimley and Jacob White, and from discussions with Ca-
rina Curto, Bryan Félix, Chad Giusti, Elizabeth Gross, Vladimir Itskov, William Kronholm,
Sean Owen, and Nora Youngs. AS was supported by the NSF (DMS-1312473).

References

[1] Anders Björner. Nerves, fibers and homotopy groups. J. Comb. Theory A, 102:88–93, 2003.

[2] Carina Curto, Elizabeth Gross, Jack Jeffries, Katie Morrison, Mohamed Omar, Zvi Rosen,
Anne Shiu, and Nora Youngs. What makes a neural code convex? Available at
arXiv:1508.00150.

[3] Carina Curto, Vladimir Itskov, Alan Veliz-Cuba, and Nora Youngs. The neural ring: an
algebraic tool for analyzing the intrinsic structure of neural codes. Bull. Math. Biol.,
75(9):1571–1611, 2013.

[4] Chad Giusti and Vladimir Itskov. A no-go theorem for one-layer feedforward networks.
Neural Comput., 26(11):2527–2540, 2014.

[5] Chad Giusti, Vladimir Itskov, and William Kronholm. On convex codes and intersection
violators. Preprint.

13

[6] Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber.
Dtsch. Math.-Ver., 32:175–176, 1923.

[7] Gil Kalai. Intersection patterns of convex sets. Israel J. Math., 48(2-3):161–174, 1984.

[8] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Com-
put., 60:94–112, 2014.

[9] T. McKee and F. McMorris. Topics in Intersection Graph Theory. Society for Industrial
and Applied Mathematics, 1999.

[10] N. J. A. Sloane. The on-line encyclopedia of integer sequences. http://oeis.org.

[11] W. A. Stein et al. Sage Mathematics Software (Version 6.7). The Sage Development Team,
2015. http://www.sagemath.org.

[12] Martin Tancer. Intersection patterns of convex sets via simplicial complexes: a survey. In
Thirty essays on geometric graph theory, pages 521–540. Springer, New York, 2013.

Appendix 1: Source code for enumerating simplicial com-
plexes and checking for local obstructions

Our code is available on SageMathCloud4.

6.1 Enumerating simplicial complexes

Here are the functions we used to generate the set of simplicial complexes on five vertices, up
to isomorphism. Nauty generates lists of hypergraphs, rather than of simplicial complexes, so
we needed to sort through the output to find those hypergraphs which contained only facets.

#input: two ordered tuples of integers, the smaller one listed first

#output: boolean, whether the smaller is contained in the larger

def containment_check(smaller, larger):

counter_s = 0

counter_l = 0

while (counter_l < len(larger)):

#print "counters: S-"+str(counter_s)+ " L-" +str(counter_l)

if (counter_s >= len(smaller)):

return true

elif (smaller[counter_s] == larger[counter_l]):

counter_s = counter_s + 1

counter_l = counter_l + 1

if counter_s==len(smaller):

return true

elif (smaller[counter_s] < larger[counter_l]):

#print "first false"

return false

elif (smaller[counter_s] > larger[counter_l]):

counter_l = counter_l + 1

#print "second"

return false

#We used nauty() to enumerate hypergraphs up to isomorphism

#nauty(number_of_sets, number_of_vertices, vertex_min_degree=1,connected=True)

#to enumerate all simplicial complexes on n vertices, we let number_of_sets range from 1 to (n choose 2)/2, since a

simplicial complex on n vertices cannot have more than (n choose 2)/2 facets

#input: tuple of tuples of integers. tuple of tuple is ordered by length; tuples of integers are in ascending order

#output: whether there are any containments in that tuple

def max_only_check(code):

for i in range(0,len(code)):

for j in range((i+1),len(code)):

if (len(code[j])>len(code[i])):

if (containment_check(code[i], code[j]) == true):

return false

else:

return true

#input: a list of hypergraphs, presented as list of tuples of tuples, ordered as specified in max_only_check

#output: a tuple containing (a list of the simplicial complexes described in terms of maximal faces, "bad:",

a list of hypergaphs that contain non-maximal faces)

def check_list_for_maximality(test):

4https://cloud.sagemath.com/projects/8fdd3fd5-5b65-4059-8e3f-95e02b104e84/files/obstructions_to_

convexity_in_neural_codes.sagews

14

good_complexes = []

bad_complexes = []

for code in test:

if max_only_check(code):

good_complexes.append(code)

else:

bad_complexes.append(code)

return (good_complexes, "bad: ", bad_complexes)

#input: a list of hypergraphs, presented as list of tuples of tuples, ordered as specified in max_only_check

#output: the number of simplicial complexes, specified in terms of maximal elements, in that list

def numerical_check_list_for_maximality(test):

num_simplicial_complexes = 0

for code in test:

if max_only_check(code):

num_simplicial_complexes= num_simplicial_complexes+1

return num_simplicial_complexes

6.2 Checking for (homological) local obstructions and enumerating
mandatory codewords

Below are the functions we used to classify neural codes on five neurons.

#given a set of sets, returns the intersection of all sets in that set.

def intersect_all_c(setList):

first = setList[0]

length = (setList).cardinality()

for i in range (0, length):

first = first.intersection(setList[i])

return first

#given a set of sets, generates all intersections of collections of those sets, and returns those which are not already in the code

#if fed a set of facets, will generate all intersections of facets

def intersections_c(setList):

result= []

subsets = Subsets(setList)

for i in range(1, (subsets).cardinality()):

result.append(intersect_all_c(subsets[i]))

return Set(result)-setList

#given a homology, returns true if the homology group is trivial in every dimension

def is_trivial_c(homology):

length = len(homology.viewvalues())

trivial_complex = SimplicialComplex([range(0, length)])

return homology == trivial_complex.homology()

#the function link_checker takes a neural code as an input and outputs the links of all intersections of elements in the code that

are not in the code

def link_checker_c(code):

simplicial_complex = SimplicialComplex(code)

maximal = simplicial_complex.facets()

links_to_check = intersections_c(code)

bad_links = []

homologies = []

for i in range(0,(links_to_check).cardinality()):

current_link = simplicial_complex.link(Simplex(links_to_check[i]))

if (is_trivial_c(current_link.homology())==false):

bad_links.append(current_link)

homologies.append(current_link.homology())

return (links_to_check, bad_links, homologies)

#this function takes a neural code as input and outputs true if has no local obstructions and false otherwise

def bool_link_checker(code):

simplicial_complex = SimplicialComplex(code)

maximal = simplicial_complex.facets()

if maximal.cardinality()==1:

return true

else:

links_to_check = intersections_c(code)

for i in range(0,(links_to_check).cardinality()):

current_link = simplicial_complex.link(Simplex(links_to_check[i]))

if (is_trivial_c(current_link.homology())==false):

return false

return true

#Given a neural code, returns detailed information about it. Will not give the right result if the code does not contain the empty set.

def detailed_link_checker(code):

simplicial_complex = SimplicialComplex(code)

maximal = simplicial_complex.facets()

n_max = maximal.cardinality()

if n_max == 1:

print "The neural code " + str(code) + " is convex because it only has one maximal face."

return true

else:

links_to_check = intersections_c(code)

missing_codewords = []

for i in range(0,(links_to_check).cardinality()):

current_link = simplicial_complex.link(Simplex(links_to_check[i]))

if (is_trivial_c(current_link.homology())==false):

15

missing_codewords.append(links_to_check[i])

if (missing_codewords == []):

print "The neural code " + str(code) + " has no local obstructions, and has maximal faces " + str(maximal) + " ."

return true

else:

print "The neural code " + str(code) + " has a local obstruction. This could be remedied if the following codewords were added:

" + str(missing_codewords)

#input: a neural code

#output: a list of mandatory codewords (required codewords for the neural code to not have local obstructions)

def another_link_checker(code):

simplicial_complex = SimplicialComplex(code)

maximal = simplicial_complex.facets()

n_max = maximal.cardinality()

links_to_check = intersections_c(code)

missing_codewords = []

for i in range(0,(links_to_check).cardinality()):

current_link = simplicial_complex.link(Simplex(links_to_check[i]))

if (is_trivial_c(current_link.homology())==false):

missing_codewords.append(links_to_check[i])

return missing_codewords

#input: a list of neural codes

#output: a list of lists of mandatory codewords

def required_codewords(codes):

result = []

for code in codes:

result.append(another_link_checker(code))

return result

#input: a neural code

#output: a tuple containing (missing mandatory codewords, missing intersections of maximal codewords which are not mandatory,

number of faces of the simplicial complex of the code which are neither maximal nor mandatory codewords)

#this is most useful to run on a neural code described only in terms of maximal codewords--you then get the mandatory codewords,

the non-mandatory intersections of maximal codewords, and the number of optional facets of the simplicial complex--this lets you

find the number of neural codes on the simplex with no local obstructions

def optional_max_inter(code):

simplicial_complex = SimplicialComplex(code)

maximal = simplicial_complex.facets()

links_to_check = intersections_c(code)

missing_codewords = []

for i in range(0,(links_to_check).cardinality()):

current_link = simplicial_complex.link(Simplex(links_to_check[i]))

if (is_trivial_c(current_link.homology())==false):

missing_codewords.append(links_to_check[i])

num_optional_faces = len([f for f in simplicial_complex.face_iterator()])-len(simplicial_complex.facets())-len(missing_codewords)

return (missing_codewords, links_to_check.difference(Set(missing_codewords)), num_optional_faces)

#input: list of tuples of tuples

#output: list of sets of sets, each set of sets containing the empty set

#converts output from nauty() into a format which works well with the neural code functions

def tuples_to_sets(the_list):

outputlist = []

for big_tuple in the_list:

outerset = Set([])

for small_tuple in big_tuple:

innerset = Set(small_tuple)

outerset = outerset.union(Set([innerset]))

outerset = outerset.union(Set([Set([])]))

outputlist.append(outerset)

return outputlist

#input: list of tuples of tuples, each tuple of tuple giving the facets of a simplicial complex

#output: a latex table whose rows are, from left to right:

#facets of simplicial complex, mandatory codewords, non-mandatory intersections of facets, number of non-facet faces

def make_table(complex_list):

complex_set = tuples_to_sets(complex_list)

missing_codeword_list = []

optional_codeword_list = []

num_optional_list = []

for current_complex in complex_set:

current_tuple = optional_max_inter(current_complex)

missing_codeword_list.append(current_tuple[0])

optional_codeword_list.append(current_tuple[1])

num_optional_list.append(current_tuple[2])

return latex(table(columns=[complex_set, missing_codeword_list, optional_codeword_list, num_optional_list]))

#input: a list of neural codes as tuples of tuples

#output: a list of intersections of facets whose links are convex

def find_optional_max_inter(code_list):

result = []

for code in code_list:

result.append(optional_max_inter(code))

return result

16

Appendix 2: Classification of codes on 5 neurons with no
local obstructions

Below we list (up to isomorphism) all 157 connected simplicial complexes on 5 vertices; here
the simplicial complexes are listed by their facets, and the vertex set is {0, 1, 2, 3, 4}. For each
simplicial complex, we list the mandatory codes, the non-mandatory intersections of facets, the
number of non-mandatory codewords, and the number of codes with no local obstructions.

17

Simplicial complex (only facets listed) Mandatory codewords

{{0, 1, 2, 3, 4}} [] {} 30 1073741824

{ {0, 2, 3, 4}, {0, 1}} [{0}] {} 14 16384

{{0, 1, 2}, {0, 3, 4}} [{0}] {} 10 1024

{{0, 1, 3, 4}, {0, 1, 2}} [{0, 1}] {} 16 65536

{{0, 1, 2, 3}, {0, 1, 2, 4}} [{0, 1, 2}] {} 20 1048576

{ {0, 3, 4}, {0, 2}, {0, 1}} [{0}] {} 7 128

{ {1, 3, 4}, {0, 2}, {0, 1}} [{0}, {1}] {} 6 64

{{1, 2, 3, 4}, {0, 2}, {0, 1}} [{2}, {0}, {1}] {} 12 4096

{{2, 3}, {0, 2, 4}, {0, 1}} [{2}, {0}] {} 6 64

{{0, 2, 3}, {0, 2, 4}, {0, 1}} [{0, 2}, {0}] {} 8 256

{{0, 2, 3}, {0, 1}, {1, 2, 4}} [{2}, {0}, {1}] {} 8 256

{{0, 2, 3}, {2, 3, 4}, {0, 1}} [{2, 3}, {0}] {} 8 256

{{1, 2, 3, 4}, {0, 2, 3}, {0, 1}} [{2, 3}, {0}, {1}] {} 14 16384

{{1, 2, 3, 4}, {0, 2, 3, 4}, {0, 1}} [{2, 3, 4}, {0}, {1}] {} 18 262144

{{0, 1, 4}, {0, 1, 2}, {0, 1, 3}} [{0, 1}] {} 11 2048

{{0, 1, 2}, {0, 2, 3, 4}, {0, 1, 3}} [{0, 2}, {0, 3}, {0}, {0, 1}] {} 14 16384

{{0, 1, 2}, {0, 1, 3}, {0, 3, 4}} [{0, 3}, {0, 1}] {{0}} 10 1024

{ {0, 1, 2}, {1, 2, 3}, {0, 3, 4}} [{1, 2}, {3}, {0}] {} 10 1024

{{1, 2, 3, 4}, {0, 1, 2}, {0, 3, 4}} [{3, 4}, {0}, {1, 2}] {} 16 65536

{{0, 1, 3, 4}, {0, 1, 2}, {0, 2, 3, 4}} [{0, 3, 4}, {0, 2}, {0}, {0, 1}] {} 18 262144

{{0, 1, 2, 3}, {0, 1, 3, 4}, {0, 1, 2, 4}} {} 20 1048576

{{1, 2}, {0, 3, 4}, {0, 2}, {0, 1}} [{2}, {0}, {1}] {} 5 32

{ {0, 4}, {0, 2}, {0, 3}, {0, 1}} [{0}] {} 4 16

{ {1, 4}, {0, 2}, {0, 3}, {0, 1}} [{0}, {1}] {} 3 8

{ {1, 2, 4}, {0, 2}, {0, 3}, {0, 1}} [{2}, {0}, {1}] {} 5 32

{{1, 2, 3, 4}, {0, 2}, {0, 3}, {0, 1}} [{2}, {3}, {0}, {1}] {} 11 2048

{{2, 4}, {1, 3}, {0, 2}, {0, 1}} [{2}, {0}, {1}] {} 2 4

{{1, 3}, {1, 2, 4}, {0, 2}, {0, 1}} [{2}, {0}, {1}] {} 5 32

{{1, 3}, {0, 2}, {2, 3, 4}, {0, 1}} [{2}, {3}, {0}, {1}] {} 4 16

{{3, 4}, {1, 2, 3}, {0, 2}, {0, 1}} [{2}, {3}, {0}, {1}] {} 4 16

{ {1, 2, 4}, {1, 2, 3}, {0, 2}, {0, 1}} [{1, 2}, {2}, {0}, {1}] {} 6 64

{{1, 2, 3}, {0, 3, 4}, {0, 2}, {0, 1}} [{2}, {3}, {0}, {1}] {} 7 128

{ {1, 3, 4}, {1, 2, 3}, {0, 2}, {0, 1}} [{1, 3}, {2}, {0}, {1}] {} 6 64

{{1, 2, 3, 4}, {0, 3, 4}, {0, 2}, {0, 1}} [{3, 4}, {2}, {0}, {1}] {} 13 8192

{ {1, 3, 4}, {0, 3, 4}, {0, 2}, {0, 1}} [{3, 4}, {0}, {1}] {} 7 128

{ {1, 3, 4}, {0, 2}, {2, 3, 4}, {0, 1}} [{3, 4}, {2}, {0}, {1}] {} 6 64

{{1, 2, 4}, {2, 3}, {0, 2, 4}, {0, 1}} [{2, 4}, {2}, {0}, {1}] {} 6 64

{{1, 3, 4}, {2, 3}, {0, 2, 4}, {0, 1}} [{4}, {2}, {3}, {0}, {1}] {} 6 64

{{0, 2, 3}, {1, 2, 3}, {0, 2, 4}, {0, 1}} [{0, 2}, {2, 3}, {0}, {1}] {{2}} 8 256

{{0, 2, 3}, {1, 2, 3}, {2, 3, 4}, {0, 1}} [{2, 3}, {0}, {1}] {} 9 512

{{0, 2, 3}, {0, 3, 4}, {0, 2, 4}, {0, 1}} [{0, 4}, {0, 2}, {0, 3}, {0}] {} 7 128

{{0, 2, 3}, {1, 3, 4}, {0, 2, 4}, {0, 1}} [{4}, {0, 2}, {3}, {0}, {1}] {} 8 256

{{0, 2, 3}, {2, 3, 4}, {0, 2, 4}, {0, 1}} [{2, 4}, {0, 2}, {2, 3}, {2}, {0}] {} 6 64

{{1, 2, 3, 4}, {0, 2, 3}, {0, 2, 4}, {0, 1}} {} 12 4096

{{0, 2, 3}, {1, 2, 4}, {2, 3, 4}, {0, 1}} [{2, 4}, {2, 3}, {0}, {1}] {{2}} 8 256

Non-mandatory
intersections of

facets

Number of
non-mandatory

codewords

Number of codes
with no local
obstructions

 [{0, 1, 4}, {0, 1, 2}, {0, 1, 3}, {0,
1}]

 [{2, 4}, {2, 3}, {0, 2}, {0}, {1},
{2}]

{{1, 2, 3, 4}, {0, 2, 3}, {0, 1, 2}, {0, 1, 3}} {} 8 256

{{0, 2, 3}, {0, 1, 2}, {0, 1, 3}, {0, 1, 4}} [{0, 2}, {0, 3}, {0}, {0, 1}] {} 9 512

{{0, 1, 4}, {0, 1, 2}, {0, 2, 3, 4}, {0, 1, 3}} {} 14 16384

 {} 12 4096

{{0, 1, 2}, {0, 3, 4}, {0, 2, 4}, {0, 1, 3}} {} 8 256

{{1, 2, 3, 4}, {0, 1, 2}, {0, 3, 4}, {0, 1, 3}} {{0}} 12 4096

{{0, 1, 2}, {1, 2, 3}, {0, 3, 4}, {0, 1, 3}} {{3}, {0}} 8 256

{{0, 1, 4}, {1, 2, 3}, {0, 3, 4}, {0, 1, 2}} [{3}, {1, 2}, {0, 4}, {0, 1}] {{0}, {1}} 10 1024

{{0, 1, 2}, {1, 2, 3}, {0, 3, 4}, {1, 2, 4}} [{1, 2}, {4}, {3}, {0}] {} 11 2048

 {} 14 16384

 {} 14 16384

{{1, 3, 4}, {0, 3, 4}, {0, 2}, {1, 2}, {0, 1}} [{3, 4}, {2}, {0}, {1}] {} 6 64

{{0, 2}, {1, 2}, {1, 4}, {0, 3}, {0, 1}} [{2}, {0}, {1}] {} 2 4

{{1, 3, 4}, {0, 2}, {1, 2}, {0, 3}, {0, 1}} [{2}, {3}, {0}, {1}] {} 4 16

{{0, 2}, {1, 2}, {0, 4}, {0, 3}, {0, 1}} [{2}, {0}, {1}] {} 2 4

{{0, 2}, {0, 4}, {1, 2, 3}, {0, 3}, {0, 1}} [{2}, {3}, {0}, {1}] {} 4 16

{{0, 2}, {1, 2, 3, 4}, {0, 4}, {0, 3}, {0, 1}} [{4}, {2}, {3}, {0}, {1}] {} 10 1024

{{0, 2}, {0, 1}, {1, 2, 3}, {0, 3}, {1, 2, 4}} [{1, 2}, {2}, {3}, {0}, {1}] {} 5 32

{{1, 3, 4}, {0, 2}, {0, 1}, {0, 3}, {1, 2, 4}} [{1, 4}, {2}, {3}, {0}, {1}] {} 5 32

{{2, 3}, {0, 2}, {1, 3}, {0, 4}, {0, 1}} [{2}, {3}, {0}, {1}] {} 1 2

{{2, 3}, {0, 2}, {1, 3}, {0, 1}, {1, 2, 4}} [{2}, {3}, {0}, {1}] {} 4 16

{{2, 4}, {0, 2}, {1, 3}, {0, 4}, {0, 1}} [{4}, {2}, {0}, {1}] {} 1 2

{{0, 2}, {1, 3}, {0, 4}, {0, 1}, {1, 2, 4}} [{4}, {2}, {0}, {1}] {} 4 16

{{0, 2}, {1, 3}, {0, 4}, {2, 3, 4}, {0, 1}} [{4}, {2}, {3}, {0}, {1}] {} 3 8

{{0, 3, 4}, {0, 2}, {1, 3}, {0, 1}, {1, 2, 4}} [{4}, {2}, {3}, {0}, {1}] {} 6 64

{{0, 2}, {1, 3}, {0, 1}, {2, 3, 4}, {1, 2, 4}} [{2, 4}, {2}, {3}, {0}, {1}] {} 5 32

{{2, 4}, {3, 4}, {0, 2}, {1, 3}, {0, 1}} [{4}, {2}, {3}, {0}, {1}] {} 0 1

{{3, 4}, {0, 2}, {1, 3}, {0, 1}, {1, 2, 4}} [{4}, {2}, {3}, {0}, {1}] {} 3 8

{{3, 4}, {0, 2}, {1, 2, 3}, {0, 1}, {1, 2, 4}} [{4}, {3}, {0}, {1}, {1, 2}, {2}] {} 4 16

 [{4}, {3}, {0}, {1}, {1, 2}, {2}] {} 7 128

 {} 5 32

 [{3, 4}, {0}, {1}, {1, 3}, {2}] {{3}} 7 128

 {} 4 16

 [{3, 4}, {2}, {0}, {1}] {} 8 256

 {{4}} 6 64

 {} 6 64

 [{3}, {0}, {1, 2}, {2, 3}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}, {0, 1}]

 [{0, 4}, {0, 2}, {0, 3}, {0}, {0,
1}]

{{1, 2, 3, 4}, {0, 1, 2}, {0, 2, 3, 4}, {0, 1,
3}}

 [{3}, {0}, {1, 2}, {2, 3, 4}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}, {0, 1}]
 [{0, 4}, {0, 2}, {0, 3}, {0}, {0,
1}]
 [{3}, {1, 2}, {3, 4}, {1}, {1, 3},
{0, 3}, {0, 1}]
 [{1}, {1, 3}, {1, 2}, {0, 3}, {0,
1}]

{{1, 2, 3, 4}, {0, 1, 3, 4}, {0, 1, 2}, {0, 2, 3,
4}}

 [{0, 3, 4}, {0}, {1, 2}, {2, 3, 4},
{3, 4}, {1, 3, 4}, {0, 2}, {1}, {2},
{0, 1}]

{ {0, 1, 3, 4}, {0, 1, 2, 3}, {0, 2, 3, 4}, {0, 1,
2, 4}}

 [{0, 2, 3}, {0, 3, 4}, {0, 1, 3},
{0}, {0, 4}, {0, 2, 4}, {0, 2}, {0, 1,
4}, {0, 1, 2}, {0, 3}, {0, 1}]

{{0, 3, 4}, {0, 2}, {1, 2, 3}, {0, 1}, {1, 2,
4}}
{{1, 3, 4}, {0, 2}, {1, 2, 3}, {0, 1}, {1, 2,
4}}

 [{0}, {1}, {1, 3}, {1, 2}, {1, 4},
{2}]

{{1, 3, 4}, {0, 3, 4}, {0, 2}, {1, 2, 3}, {0,
1}}
{{1, 3, 4}, {0, 2}, {1, 2, 3}, {2, 3, 4}, {0,
1}}

 [{3, 4}, {2, 3}, {3}, {0}, {1}, {1,
3}, {2}]

{{1, 3, 4}, {0, 3, 4}, {0, 2}, {2, 3, 4}, {0,
1}}
{{0, 3, 4}, {2, 3}, {0, 1}, {0, 2, 4}, {1, 2,
4}}

 [{2, 4}, {3}, {0}, {1}, {0, 4},
{2}]

{{0, 2, 3}, {0, 1}, {1, 2, 3}, {0, 2, 4}, {1, 2,
4}}

 [{2, 4}, {2, 3}, {0, 2}, {0}, {1},
{1, 2}, {2}]

 {{2}, {3}} 7 128

 {{2}, {3}} 8 256

 {} 1 2

 {} 7 128

 {{4}, {3}} 6 64

 {} 7 128

 {} 3 8

 {{2}, {3}} 9 512

 {} 8 256

 {} 9 512

 {} 9 512

 {{2}, {3}} 6 64

 {} 6 64

 {{3}} 7 128

10 1024

 {} 0 1

 [{3, 4}, {2}, {0}, {1}] {} 8 256

 [{2}, {3}, {0}, {1}] {} 4 16

 [{3, 4}, {2}, {3}, {0}, {1}] {} 5 32

 [{2}, {3}, {0}, {1}] {} 1 2

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 3 8

 [{4}, {3}, {0}, {1}, {1, 2}, {2}] {} 4 16

 {} 4 16

 {} 3 8

{{0, 2, 3}, {0, 3, 4}, {1, 2, 3}, {0, 2, 4}, {0,
1}}

 [{0}, {0, 4}, {2, 3}, {0, 2}, {1},
{0, 3}]

{{0, 2, 3}, {1, 3, 4}, {1, 2, 3}, {0, 2, 4}, {0,
1}}

 [{0}, {4}, {2, 3}, {0, 2}, {1}, {1,
3}]

{{0, 2, 3}, {0, 3, 4}, {2, 3, 4}, {0, 2, 4}, {0,
1}}

 [{2, 4}, {3}, {0}, {0, 4}, {3, 4},
{4}, {2, 3}, {0, 2}, {2}, {0, 3}]

{{0, 2, 3}, {0, 3, 4}, {1, 2, 3, 4}, {0, 2, 4},
{0, 1}}

 [{2, 4}, {3}, {0}, {0, 4}, {3, 4},
{4}, {2, 3}, {0, 2}, {1}, {2}, {0,
3}]

{{0, 2, 3}, {1, 3, 4}, {2, 3, 4}, {0, 2, 4}, {0,
1}}

 [{2, 4}, {0}, {3, 4}, {2, 3}, {0, 2},
{1}, {2}]

{{0, 2, 3}, {1, 2, 3}, {2, 3, 4}, {0, 2, 4}, {0,
1}}

 [{2, 4}, {2, 3}, {0, 2}, {0}, {1},
{2}]

{{0, 2, 3}, {0, 1, 3}, {0, 1, 4}, {0, 1, 2}, {1,
2, 3}}

 [{3}, {0}, {1, 2}, {2, 3}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}, {0, 1}]

{{0, 2, 3}, {0, 1, 3}, {0, 1, 4}, {0, 1, 2}, {2,
3, 4}}

 [{0}, {4}, {2, 3}, {0, 2}, {0, 3},
{0, 1}]

{{0, 2, 3}, {0, 1, 3}, {1, 2, 3, 4}, {0, 1, 4},
{0, 1, 2}}

 [{3}, {0}, {1, 2}, {1, 4}, {2, 3},
{0, 2}, {1}, {1, 3}, {2}, {0, 3}, {0,
1}]

{{0, 1, 3}, {1, 2, 3, 4}, {0, 1, 4}, {0, 1, 2},
{0, 2, 3, 4}}

 [{3}, {0}, {1, 2}, {0, 4}, {1, 4},
{2, 3, 4}, {4}, {0, 2}, {1}, {1, 3},
{2}, {0, 3}, {0, 1}]

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {0, 1, 2}, {0,
2, 4}}

 [{0, 4}, {0, 2}, {0, 3}, {0}, {0,
1}]

{{0, 3, 4}, {0, 1, 3}, {0, 1, 2}, {1, 2, 3}, {0,
2, 4}}

 [{0}, {1, 2}, {0, 4}, {0, 2}, {1},
{1, 3}, {0, 3}, {0, 1}]

{{0, 3, 4}, {0, 1, 3}, {1, 2, 3, 4}, {0, 1, 2},
{0, 2, 4}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{3, 4}, {4}, {0, 2}, {1}, {1, 3},
{2}, {0, 3}, {0, 1}]

{{0, 3, 4}, {0, 1, 3}, {0, 1, 4}, {0, 1, 2}, {1,
2, 3}}

 [{0}, {1, 2}, {0, 4}, {1}, {1, 3},
{0, 3}, {0, 1}]

{{0, 3, 4}, {0, 1, 4}, {0, 1, 2}, {1, 2, 3}, {2,
3, 4}}

 [{1, 2}, {0, 4}, {3, 4}, {2, 3}, {0,
1}]

 {{4}, {2}, {3},
{0}, {1}}

{{0, 1, 3, 4}, {1, 2, 3, 4}, {0, 1, 2, 3}, {0, 2,
3, 4}, {0, 1, 2, 4}}

 [{0, 2, 3}, {4}, {1, 2}, {0, 4}, {1,
2, 4}, {1, 3, 4}, {1, 3}, {0, 3}, {2,
4}, {0, 3, 4}, {3}, {0}, {1, 2, 3},
{1, 4}, {2, 3, 4}, {0, 2, 4}, {3, 4},
{2, 3}, {0, 2}, {0, 1, 3}, {1}, {0, 1,
4}, {0, 1, 2}, {2}, {0, 1}]

{{1, 3, 4}, {0, 3, 4}, {0, 2}, {1, 2}, {2, 3,
4}, {0, 1}}
{{0, 2}, {1, 3}, {1, 2}, {0, 1}, {2, 3, 4}, {0,
3}}
{{1, 3, 4}, {0, 2}, {1, 2}, {0, 1}, {2, 3, 4},
{0, 3}}
{{0, 2}, {1, 3}, {1, 2}, {0, 4}, {0, 3}, {0,
1}}
{{3, 4}, {0, 2}, {1, 2}, {0, 4}, {0, 3}, {0,
1}}
{{1, 3, 4}, {0, 2}, {1, 2}, {0, 4}, {0, 3}, {0,
1}}
{{0, 2}, {0, 4}, {0, 1}, {1, 2, 3}, {0, 3}, {1,
2, 4}}
{{1, 3, 4}, {0, 2}, {0, 1}, {1, 2, 3}, {0, 3},
{1, 2, 4}}

 [{3}, {0}, {1}, {1, 3}, {1, 2}, {1,
4}, {2}]

{{1, 3, 4}, {0, 2}, {0, 1}, {2, 3, 4}, {0, 3},
{1, 2, 4}}

 [{2, 4}, {3}, {0}, {1, 4}, {3, 4},
{4}, {1}, {2}]

 [{4}, {2}, {3}, {0}, {1}] {} 6 64

 [{2}, {3}, {0}, {1}] {} 1 2

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 3 8

 [{2, 4}, {4}, {3}, {0}, {1}, {2}] {} 4 16

 {{4}} 6 64

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 3 8

 {{4}, {3}} 6 64

 {} 6 64

 {} 0 1

 {} 4 16

 {} 7 128

 {{4}, {3}} 5 32

 {} 2 4

 {{4}} 5 32

 {} 4 16

 {} 10 1024

 {} 5 32

 {} 3 8

 {} 0 1

 {{2}, {3}} 7 128

 {{4}, {2}} 5 32

 [{3, 4}, {4}, {3}, {0}, {1}, {2}] {} 4 16

 {} 3 8

{{0, 3, 4}, {0, 2}, {1, 3}, {2, 3}, {0, 1}, {1,
2, 4}}
{{2, 3}, {0, 2}, {1, 3}, {1, 2}, {0, 4}, {0,
1}}
{{3, 4}, {2, 3}, {0, 2}, {1, 3}, {0, 4}, {0,
1}}
{{2, 3}, {0, 2}, {1, 3}, {0, 4}, {0, 1}, {1, 2,
4}}
{{0, 2}, {1, 3}, {0, 4}, {0, 1}, {2, 3, 4}, {1,
2, 4}}
{{0, 3, 4}, {0, 2}, {1, 3}, {0, 1}, {2, 3, 4},
{1, 2, 4}}

 [{2, 4}, {3, 4}, {3}, {0}, {1},
{2}]

{{2, 4}, {3, 4}, {0, 2}, {1, 3}, {0, 3}, {0,
1}}
{{3, 4}, {0, 2}, {1, 3}, {0, 1}, {0, 3}, {1, 2,
4}}
{{1, 3, 4}, {0, 3, 4}, {0, 2}, {1, 2, 3}, {0,
1}, {1, 2, 4}}

 [{0}, {1, 2}, {1, 4}, {3, 4}, {1},
{1, 3}, {2}]

{{1, 3, 4}, {0, 3, 4}, {0, 2}, {1, 2, 3}, {2, 3,
4}, {0, 1}}

 [{3, 4}, {2, 3}, {3}, {0}, {1}, {1,
3}, {2}]

{{1, 3, 4}, {0, 2}, {0, 1}, {1, 2, 3}, {2, 3,
4}, {1, 2, 4}}

 [{2, 4}, {3}, {0}, {1, 2}, {1, 4},
{3, 4}, {4}, {2, 3}, {1}, {1, 3},
{2}]

{{1, 3, 4}, {0, 3, 4}, {2, 3}, {0, 1}, {0, 2,
4}, {1, 2, 4}}

 [{2, 4}, {3}, {0}, {0, 4}, {1, 4},
{3, 4}, {4}, {1}, {2}]

{{0, 2, 3}, {0, 1}, {1, 2, 3}, {2, 3, 4}, {0, 2,
4}, {1, 2, 4}}

 [{2, 4}, {2, 3}, {0, 2}, {0}, {1},
{1, 2}, {2}]

{{0, 2, 3}, {0, 3, 4}, {0, 1}, {1, 2, 3}, {0, 2,
4}, {1, 2, 4}}

 [{2, 4}, {0}, {1, 2}, {0, 4}, {2, 3},
{0, 2}, {1}, {2}, {0, 3}]

{{0, 2, 3}, {0, 3, 4}, {1, 2, 3}, {2, 3, 4}, {0,
2, 4}, {0, 1}}

 [{2, 4}, {3}, {0}, {0, 4}, {3, 4},
{4}, {2, 3}, {0, 2}, {1}, {2}, {0,
3}]

{{0, 2, 3}, {1, 3, 4}, {1, 2, 3}, {2, 3, 4}, {0,
2, 4}, {0, 1}}

 [{2, 4}, {3}, {0}, {3, 4}, {2, 3},
{0, 2}, {1}, {1, 3}, {2}]

{{0, 2, 3}, {0, 1, 3}, {0, 1, 4}, {0, 1, 2}, {1,
2, 3}, {2, 3, 4}}

 [{3}, {0}, {1, 2}, {4}, {2, 3}, {0,
2}, {1}, {1, 3}, {2}, {0, 3}, {0, 1}]

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {0, 1, 4}, {0,
1, 2}, {0, 2, 4}}

 [{0, 4}, {0, 2}, {0, 3}, {0}, {0,
1}]

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {1, 2, 3, 4},
{0, 1, 2}, {0, 2, 4}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{3, 4}, {4}, {2, 3}, {0, 2}, {1}, {1,
3}, {2}, {0, 3}, {0, 1}]

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {0, 1, 2}, {1,
2, 3}, {0, 2, 4}}

 [{3}, {0}, {1, 2}, {0, 4}, {2, 3},
{0, 2}, {1}, {1, 3}, {2}, {0, 3}, {0,
1}]

{{0, 3, 4}, {0, 1, 3}, {0, 1, 2}, {1, 2, 3}, {2,
3, 4}, {0, 2, 4}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{3, 4}, {4}, {2, 3}, {0, 2}, {1}, {1,
3}, {2}, {0, 3}, {0, 1}]

{{0, 3, 4}, {0, 1, 3}, {0, 1, 4}, {0, 1, 2}, {1,
2, 3}, {0, 2, 4}}

 [{0}, {1, 2}, {0, 4}, {0, 2}, {1},
{1, 3}, {0, 3}, {0, 1}]

{{0, 3, 4}, {0, 1, 3}, {0, 1, 4}, {0, 1, 2}, {1,
2, 3}, {2, 3, 4}}

 [{3}, {0}, {1, 2}, {0, 4}, {3, 4},
{2, 3}, {1}, {1, 3}, {0, 3}, {0, 1}]

{{1, 2}, {0, 4}, {2, 3, 4}, {1, 3, 4}, {0, 2},
{0, 3}, {0, 1}}
{{0, 4}, {1, 2, 4}, {1, 3, 4}, {0, 2}, {1, 2,
3}, {0, 3}, {0, 1}}

 [{3}, {0}, {1, 2}, {1, 4}, {4}, {1},
{1, 3}, {2}]

 {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 3 8

 [{2}, {3}, {0}, {1}] {} 1 2

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 3 8

 {} 2 4

 {} 0 1

 {} 2 4

 {} 4 16

 {} 4 16

 {} 0 1

 {{3}} 3 8

 {} 1 2

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 3 8

 {} 0 1

 {} 1 2

 {} 0 1

{ {2, 3, 4}, {1, 2, 4}, {1, 3, 4}, {0, 2}, {1, 2,
3}, {0, 3}, {0, 1}}

 [{2, 4}, {3}, {0}, {1, 2}, {1, 4},
{3, 4}, {4}, {2, 3}, {1}, {1, 3},
{2}]

{{1, 2}, {0, 4}, {3, 4}, {2, 3}, {0, 2}, {1,
3}, {0, 1}}
{{0, 4}, {1, 2, 4}, {3, 4}, {2, 3}, {0, 2}, {1,
3}, {0, 1}}
{{1, 2}, {3, 4}, {2, 3}, {0, 2}, {1, 3}, {0,
3}, {0, 1}}
{{0, 4}, {3, 4}, {2, 3}, {0, 2}, {1, 3}, {0,
3}, {0, 1}}
{{1, 4}, {3, 4}, {2, 3}, {0, 2}, {1, 3}, {0,
3}, {0, 1}}
{ {1, 2, 4}, {3, 4}, {2, 3}, {0, 2}, {1, 3}, {0,
3}, {0, 1}}

{{0, 3, 4}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4}, {0,
2}, {1, 2, 3}, {0, 1}}

 [{2, 4}, {3}, {0}, {1, 2}, {1, 4},
{3, 4}, {4}, {2, 3}, {1}, {1, 3},
{2}]

{{0, 2, 3}, {0, 3, 4}, {0, 2, 4}, {1, 2, 4}, {1,
3, 4}, {1, 2, 3}, {0, 1}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{1, 4}, {3, 4}, {4}, {2, 3}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}]

{{0, 2, 3}, {0, 3, 4}, {2, 3, 4}, {0, 2, 4}, {1,
2, 4}, {1, 2, 3}, {0, 1}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{3, 4}, {4}, {2, 3}, {0, 2}, {1},
{2}, {0, 3}]

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {0, 2, 4}, {0,
1, 4}, {0, 1, 2}, {1, 2, 3}}

 [{3}, {0}, {1, 2}, {0, 4}, {2, 3},
{0, 2}, {1}, {1, 3}, {2}, {0, 3}, {0,
1}]

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {1, 2, 3, 4},
{0, 2, 4}, {0, 1, 4}, {0, 1, 2}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{1, 4}, {3, 4}, {4}, {2, 3}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}, {0, 1}]

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {2, 3, 4}, {0,
2, 4}, {0, 1, 2}, {1, 2, 3}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{3, 4}, {4}, {2, 3}, {0, 2}, {1}, {1,
3}, {2}, {0, 3}, {0, 1}]

{{0, 3, 4}, {0, 1, 3}, {0, 2, 4}, {1, 2, 4}, {0,
1, 4}, {0, 1, 2}, {1, 2, 3}}

 [{2, 4}, {0}, {1, 2}, {0, 4}, {1, 4},
{4}, {0, 2}, {1}, {1, 3}, {2}, {0,
3}, {0, 1}]

{{0, 3, 4}, {0, 1, 3}, {2, 3, 4}, {0, 2, 4}, {0,
1, 4}, {0, 1, 2}, {1, 2, 3}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{3, 4}, {4}, {2, 3}, {0, 2}, {1}, {1,
3}, {2}, {0, 3}, {0, 1}]

{{2, 4}, {1, 2}, {0, 4}, {3, 4}, {0, 2}, {1,
3}, {0, 3}, {0, 1}}

{{0, 4}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4}, {0,
2}, {1, 2, 3}, {0, 3}, {0, 1}}

 [{2, 4}, {3}, {0}, {1, 2}, {1, 4},
{3, 4}, {4}, {2, 3}, {1}, {1, 3},
{2}]

{{1, 2}, {0, 4}, {3, 4}, {2, 3}, {0, 2}, {1,
3}, {0, 3}, {0, 1}}
{{0, 4}, {1, 2, 4}, {3, 4}, {2, 3}, {0, 2}, {1,
3}, {0, 3}, {0, 1}}

{{0, 2, 3}, {0, 3, 4}, {2, 3, 4}, {0, 2, 4}, {1,
2, 4}, {1, 3, 4}, {1, 2, 3}, {0, 1}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{1, 4}, {3, 4}, {4}, {2, 3}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}]

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {0, 2, 4}, {1,
2, 4}, {0, 1, 4}, {0, 1, 2}, {1, 2, 3}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{1, 4}, {4}, {2, 3}, {0, 2}, {1}, {1,
3}, {2}, {0, 3}, {0, 1}]

{{0, 3, 4}, {0, 1, 3}, {2, 3, 4}, {0, 2, 4}, {1,
2, 4}, {0, 1, 4}, {0, 1, 2}, {1, 2, 3}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{1, 4}, {3, 4}, {4}, {2, 3}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}, {0, 1}]

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 {} 0 1

 [{4}, {2}, {3}, {0}, {1}] {} 0 1

 {} 0 1

{{1, 2}, {0, 4}, {1, 4}, {3, 4}, {2, 3}, {0,
2}, {1, 3}, {0, 3}, {0, 1}}

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {2, 3, 4}, {0,
2, 4}, {1, 2, 4}, {0, 1, 4}, {0, 1, 2}, {1, 2,
3}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{1, 4}, {3, 4}, {4}, {2, 3}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}, {0, 1}]

{{2, 4}, {1, 2}, {0, 4}, {1, 4}, {3, 4}, {2,
3}, {0, 2}, {1, 3}, {0, 3}, {0, 1}}

{{0, 2, 3}, {0, 3, 4}, {0, 1, 3}, {2, 3, 4}, {0,
2, 4}, {1, 2, 4}, {1, 3, 4}, {0, 1, 4}, {0, 1,
2}, {1, 2, 3}}

 [{2, 4}, {3}, {0}, {1, 2}, {0, 4},
{1, 4}, {3, 4}, {4}, {2, 3}, {0, 2},
{1}, {1, 3}, {2}, {0, 3}, {0, 1}]

