Homework 9

Math 147, Fall 2017

This homework is due on Thursday, Oct. 26.

- 0. Read Sections 4.8 and 5.1. After reading these sections, you should be able to answer the following questions (which are *not* to be turned in).
 - The Mean-Value Theorem guarantees (under certain hypotheses) the existence of a number c with a < c < b such that $f'(c) = \frac{f(b)-f(a)}{b-a}$. Does it tell you where in the interval (a, b) the number c is, or how many such c exist? Could there be two? Could there be infinitely many? (Consider a straight line.)
 - What does Rolle's Theorem say? How is it related to the Mean-Value Theorem?
- 1. Compute the derivative of $f(x) = x^2 + x^{\cos x} (\ln x)^x$.
- 2. (a) Determine sin (arccos ³/₅). *Hint:* Let θ = arccos ³/₅ be one angle of a right triangle.
 (b) Determine cos (arcsin ³/₅).
- 3. Determine the value(s) of m and b that make the following function differentiable:

$$f(x) = \begin{cases} \arctan x & \text{if } x < 1\\ mx + b & \text{if } x \ge 1 \end{cases}$$

- 4. (a) Determine the linear approximation of f(x) = e^{2x} at x = 0.
 (b) Use the linear approximation you found to estimate e^{-0.4}.
- 5. Section 4.8 # 10, 16, 18, 38
- 6. Section 5.1 # 4, 26, 32, 38, 42, 48
- 7. (*Extra credit: 2 pts.) Do the practice exam, and staple your solutions to your homework.
- 8. (These problems are *not* to be turned in!) Section 4.7 # 18, 22; Section 4.8 # 1, 7, 11, 17, 25, 33, 37; Section 5.1 # 3, 9–12, 17, 25, 33, 35, 45, 46, 47, 53, 54

Reminder: The second exam is on Thursday–Friday, October 26–27. Please bring pencils and a 15question scantron form. The topics for the exam are from Sections 4.2–4.8 and 5.1. The following questions may guide your studying for the exam:

- When should I use the product rule? chain rule? implicit differentiation? logarithmic differentiation? the formula for the derivative of an inverse function?
- What steps do I take when doing a related rates problem? doing implicit differentiation? logarithmic differentiation? finding global max/min?
- Can I use the power rule for computing the derivative of x^{x} ? What about 5^{x} or x^{5} ?
- How can I determine whether a piecewise function is continuous and/or differentiable?
- How can I find the differential equation for a radioactive decay function or an exponential growth function?
- How do I compute acceleration? velocity? the instantaneous per-capita growth rate?
- What do the extreme-value and mean-value theorems say?