Homework 7

Math 171H (section 201), Fall 2023

This homework is due on Tuesday, October 10 at the start of class. (Turn in answers to questions 1-9.)
0. Read Sections 3.3-3.4

1. Evaluate the following limits. (No explanation required, but show your work.)
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
(b) $\lim _{x \rightarrow 0} \frac{x}{\sin x}$
(c) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
(d) $\lim _{x \rightarrow \pi} \frac{\sin x}{x}$
(e) $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{2 \theta^{2}}$
(f) $\lim _{\theta \rightarrow 0} \frac{\sin ^{2} \theta}{3 \theta}$
2. Evaluate the following derivatives. (No explanation required, but show your work.)
(a) $y=e^{x} \sin x$
(b) $y=\frac{x \sin x}{1-\cos x}$
(c) $f(\theta)=\cos ^{2} \theta$
(d) $f(\theta)=\tan ^{2}(3 \theta)$
(e) $y=(3 x-1)^{2}(2 x+2)^{-4} 3^{x}$
(f) $y=\sqrt{1+1 / \sqrt{2 x}}$
(g) $f(x)=x^{2} \cdot g(1-x)$ (give your answer in terms of the functions g and g^{\prime})
3. Give a formula for the derivative of $f(g(h(x)))$.
4. (a) Give examples of functions $f(x)$ and $g(x)$ for which $(f(x) g(x))^{\prime}=f^{\prime}(x) g^{\prime}(x)$.
(b) Give examples of functions $f(x)$ and $g(x)$ for which $(f(x) g(x))^{\prime} \neq f^{\prime}(x) g^{\prime}(x)$.
5. Is it possible to write $f(x)=2+x$ as the product of two differentiable functions, $g(x)$ and $h(x)$, for which $g(0)=h(0)=0$? Prove your answer. (Hint: Take a derivative.)
6. Consider the function $f(x)=a \cos x+b \sin x$, where a and b are real numbers. Show that $f^{(4)}=f$ (here, $f^{(4)}$ denotes the fourth derivative of f).
7. Assume that f is twice-differentiable everywhere (here, "everywhere" means on all of \mathbb{R}) and that:

$$
\begin{align*}
f^{\prime \prime}(x)+f(x) & =0 \tag{1}\\
f(0)=f^{\prime}(0) & =0
\end{align*}
$$

(a) Multiply the first equation in (1) by $f^{\prime}(x)$, and use the result to show that

$$
\begin{equation*}
\left(\left(f^{\prime}\right)^{2}+f^{2}\right)^{\prime}=0 \tag{2}
\end{equation*}
$$

(b) Use equation (2) to show that $f(x)=0$. (You may use the fact [proven later this semester] that if $g^{\prime}=0$ then g is a constant function.)
8. Prove the following: If f is twice-differentiable everywhere and

$$
\begin{aligned}
f^{\prime \prime}(x)+f(x) & =0 \\
f(0) & =a \\
f^{\prime}(0) & =0,
\end{aligned}
$$

then $f(x)=a \cos x+b \sin x$.
(Hint: Apply the previous problem to the function $h(x)=f(x)-a \cos x-b \sin x$.)
9. A polynomial $f(x)$ has a double root a if $f(x)=(x-a)^{2} g(x)$, for some polynomial $g(x)$.
(a) Prove that a is a double root of $f(x)$ if and only if a is a double root of $f(x)$ and a double root of $f^{\prime}(x)$.
(b) Describe the values of a, b, c, with $a \neq 0$, for which $f(x)=a x^{2}+b x+c$ has a double root. What does such a parabola $y=f(x)$ look like?

