Homework 10

Math 415 (section 502), Fall 2015

This homework is due on Thursday, November 5. You may cite results from class.

- 0. (This problem is not to be turned in.)
 - (a) Read Section 15.
 - (b) Section 15 #2, 4, 10, 36
- 1. Complete the following sentences. (No proofs necessary for this problem.)
 - (a) The order of $6 + \langle 4 \rangle$ is the factor group $\mathbb{Z}_8 / \langle 4 \rangle$ is _____.
 - (b) If H is a ______ of a group G, then the ______ form a group, denoted by G/H, in which the operation is defined by ______ and the identity element is ______.
 - (c) A group G is *simple* if _____
 - (d) In the group $G = \mathbb{Q} \times \mathbb{Q}$, the elements (-1, 3) and $(0, _)$ are in the same coset of the subgroup $H := \{(x, y) \mid y = -2x\}.$
- 2. True/false. (No proofs necessary for this problem.)
 - (a) For any group G, the set of homomorphisms $G \to G$ forms a group under composition.
 - (b) Up to isomorphism, there is a unique abelian group of order 10.
 - (c) \mathbb{R}^+ is a normal subgroup of \mathbb{R} .
 - (d) The following is a well-defined function: $\phi : \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}$ given by $\phi(n+5\mathbb{Z}) := n$.
- 3. Prove or disprove: There exists a group G and a homomorphism $\phi : S_3 \to G$ for which the kernel is $\langle (12) \rangle$.
- 4. Assume that G and G' are finite groups of the same order (|G| = |G'| < ∞). Prove that the following are equivalent for a homomorphism φ : G → G': (1) φ is an isomorphism, (2) φ is 1-1 (injective), and (3) φ is onto (surjective).
- 5. Let n be a positive integer. For i = 1, 2, ..., n, let $\phi_i : \mathbb{Z}_n \to \mathbb{Z}_n$ be the function given by $\phi_i(x) := ix$.
 - (a) Prove the following: {homomorphisms $\mathbb{Z}_n \to \mathbb{Z}_n$ } = { $\phi_i \mid i = 1, 2, ..., n$ }.
 - (b) Prove the following: $\operatorname{Aut}(\mathbb{Z}_n) = \{\phi_i \mid \gcd(i, n) = 1\}.$
 - (c) Prove that $|\operatorname{Aut}(\mathbb{Z}_p)| = p 1$ if p is a prime number.
 - (d) Is $Aut(\mathbb{Z}_6)$ cyclic? Explain.

- 6. Let $\phi: G \to G'$ be a homomorphism. Assume that G has order 20.
 - (a) Could ker(ϕ) have order 6? Explain.
 - (b) Prove that if $\ker(\phi)$ has order 4, then the order of G' (if finite) is at least 5.
- 7. (a) Which elements of \mathbb{R}/\mathbb{Z} have finite order? Give a proof.
 - (b) Which elements of \mathbb{R}/\mathbb{Q} have finite order? Give a proof.
- 8. Assume that H and K are both normal subgroups of a group G and that $K \subset H$. On the previous homework, you proved that K is a *normal* subgroup of H.
 - (a) Write down a function $\phi: G/K \to G/H$ for which the kernel is H/K. Prove that your function ϕ is well-defined, is a homomorphism, and has the correct kernel. Conclude that H/K is a normal subgroup of G/K.
 - (b) Use the fundamental homomorphism theorem to prove that

$$(G/K)/(H/K) \cong G/H$$
.

9. Section 15 #14, 19, 34