Homework 8

Math 415 (section 502), Fall 2015

This homework is due on Thursday, October 22. You may cite results from class/homework/exam.

- 0. (This problem is not to be turned in.)
 - (a) Read Section 13.
 - (b) Section 13 # 1–28, 45 (do as many as you can; some are to be turned in see below)
 - (c) Prove that if H is a subgroup of a group G, then the inclusion function $i: H \to G$ given by i(x) := x is a homomorphism. What is the kernel?
 - (d) List all homomorphisms $\mathbb{Z}_{10} \to A_4$, and their kernels and images.
 - (e) List all homomorphisms $\mathbb{Z} \to A_4$ for which the kernel is $\langle 2 \rangle$.
 - (f) If G, H, and K are finite groups of order m, n, and p, respectively, then what is the order of $G \times H \times K$?
 - (g) If G is an infinite group, and H is a finite group, does it follow that $G \times H$ is an infinite group?
 - (h) Prove or disprove: if $\phi: G \to G'$ is a homomorphism, and G' is abelian, then G is abelian.
 - (i) Prove or disprove: if $\phi : G \to G'$ is a homomorphism, and G is abelian, then G' is abelian.
 - (j) Prove or disprove: if $\phi : G \to G'$ is a surjective homomorphism, and G' is abelian, then the kernel of ϕ is abelian.
 - (k) Prove or disprove: if $\phi: G \to G'$ is a homomorphism, and G' is cyclic, then G is cyclic.
- 1. Let G be a group, and let $g \in G$. Consider the function $\phi : G \to G$ given by $\phi(x) = gxg^{-1}$.
 - (a) Prove that ϕ is a homomorphism.
 - (b) Determine the kernel of ϕ .
 - (c) Is ϕ an automorphism? Give a proof. (Recall that an *automorphism* of a group K is an isomorphism from K to K.)
- 2. Let G and K be groups. Let $\pi: G \times K \to G$ be the projection function $\pi(g, k) := g$.
 - (a) Prove that π is a homomorphism.
 - (b) Prove that kernel of π is isomorphic to K.

- 3. (a) Prove or disprove: if $\phi : G \to G'$ is a homomorphism, and G' is infinite, then G is infinite.
 - (b) Prove or disprove: if $\phi : G \to G'$ is a homomorphism, G is infinite, and G' is finite, then ker(ϕ) is infinite.
- 4. (a) Explain how the symmetric group S_n can be viewed as a subgroup of S_m for any $m \ge n$.
 - (b) Are (17) and (1237) in the same left coset of (the subgroup) S_6 in the group S_7 ? Explain. (*Hint*: Recall the criterion for when 2 cosets are equal.)
 - (c) Are (27) and (1237) in the same left coset of (the subgroup) S_6 in the group S_7 ? Explain.
- 5. Section 13 # 10, 22, 29, 32, 40, 50, 52
- 6. Section 14 # 6
- 7. (Challenge problem optional!)
 - (a) Prove or disprove: if G is an abelian group that is not cyclic, then G contains a subgroup isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ for some prime number p. (Last week's homework did the case when G is finite.)
 - (b) Prove or disprove: for a subgroup H of a group G, every left coset of H contains the identity element of G.
 - (c) Prove or disprove: for a subgroup H of a group G, if two left cosets of H intersect, then they are equal.
 - (d) Section 13 # 53