Homework 8

Math 415 (section 502), Fall 2015

This homework is due on Thursday, October 22. You may cite results from class/homework/exam.
0. (This problem is not to be turned in.)
(a) Read Section 13.
(b) Section 13 \# 1-28, 45 (do as many as you can; some are to be turned in - see below)
(c) Prove that if H is a subgroup of a group G, then the inclusion function $i: H \rightarrow G$ given by $i(x):=x$ is a homomorphism. What is the kernel?
(d) List all homomorphisms $\mathbb{Z}_{10} \rightarrow A_{4}$, and their kernels and images.
(e) List all homomorphisms $\mathbb{Z} \rightarrow A_{4}$ for which the kernel is $\langle 2\rangle$.
(f) If G, H, and K are finite groups of order m, n, and p, respectively, then what is the order of $G \times H \times K$?
(g) If G is an infinite group, and H is a finite group, does it follow that $G \times H$ is an infinite group?
(h) Prove or disprove: if $\phi: G \rightarrow G^{\prime}$ is a homomorphism, and G^{\prime} is abelian, then G is abelian.
(i) Prove or disprove: if $\phi: G \rightarrow G^{\prime}$ is a homomorphism, and G is abelian, then G^{\prime} is abelian.
(j) Prove or disprove: if $\phi: G \rightarrow G^{\prime}$ is a surjective homomorphism, and G^{\prime} is abelian, then the kernel of ϕ is abelian.
(k) Prove or disprove: if $\phi: G \rightarrow G^{\prime}$ is a homomorphism, and G^{\prime} is cyclic, then G is cyclic.

1. Let G be a group, and let $g \in G$. Consider the function $\phi: G \rightarrow G$ given by $\phi(x)=g x g^{-1}$.
(a) Prove that ϕ is a homomorphism.
(b) Determine the kernel of ϕ.
(c) Is ϕ an automorphism? Give a proof. (Recall that an automorphism of a group K is an isomorphism from K to K.)
2. Let G and K be groups. Let $\pi: G \times K \rightarrow G$ be the projection function $\pi(g, k):=g$.
(a) Prove that π is a homomorphism.
(b) Prove that kernel of π is isomorphic to K.
3. (a) Prove or disprove: if $\phi: G \rightarrow G^{\prime}$ is a homomorphism, and G^{\prime} is infinite, then G is infinite.
(b) Prove or disprove: if $\phi: G \rightarrow G^{\prime}$ is a homomorphism, G is infinite, and G^{\prime} is finite, then $\operatorname{ker}(\phi)$ is infinite.
4. (a) Explain how the symmetric group S_{n} can be viewed as a subgroup of S_{m} for any $m \geq n$.
(b) Are (17) and (1237) in the same left coset of (the subgroup) S_{6} in the group S_{7} ? Explain. (Hint: Recall the criterion for when 2 cosets are equal.)
(c) Are (27) and (1237) in the same left coset of (the subgroup) S_{6} in the group S_{7} ? Explain.
5. Section $13 \# 10,22,29,32,40,50,52$
6. Section 14 \# 6
7. (Challenge problem - optional!)
(a) Prove or disprove: if G is an abelian group that is not cyclic, then G contains a subgroup isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ for some prime number p. (Last week's homework did the case when G is finite.)
(b) Prove or disprove: for a subgroup H of a group G, every left coset of H contains the identity element of G.
(c) Prove or disprove: for a subgroup H of a group G, if two left cosets of H intersect, then they are equal.
(d) Section 13 \# 53
