Homework 10

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on Thursday, March 30. Write your section number on the top of your homework.
0. (This problem is not to be turned in.)
(a) Read Section 49-50
(b) (Practice Problems) Section $49 \# 2$
(c) (Practice Problems) Section 50 \#2, 7-9, 17, 22-23

1. True/False. (You do not need to give proofs for this problem.)
(a) Let α and β be algebraic elements over a field F. Then $F(\alpha)$ and $F(\beta)$ are isomorphic fields if and only if their minimal polynomials over F are the same.
(b) The splitting field of $x^{4}-3$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[4]{3})$.
(c) The splitting field of $x^{4}-3$ over \mathbb{R} is \mathbb{C}.
(d) If E is a field extension of F, and both E and F are algebraically closed, then $E=F$.
(e) Every algebraically closed field has characteristic 0 .
(f) $\mathbb{C}(x)$ is an algebraically closed field.
2. Section $49 \# 6,8($ not $i), 11,13$
3. Section $50 \# 14$
4. (a) Assume that E is a simple algebraic extension of a field F. What do $|G(E / F)|$ and $\{E: F\}$ count? Conclude that $|G(E / F)| \leq\{E: F\} \leq[E: F]$.
(b) Compute $\left[\mathbb{Q}(\pi): \mathbb{Q}\left(\pi^{2}\right)\right]$ and $\left\{\mathbb{Q}(\pi): \mathbb{Q}\left(\pi^{2}\right)\right\}$. Explain your answers.
5. Compute the degree over \mathbb{Q} of the splitting field of $x^{3}-1$ over \mathbb{Q}. Explain your answer.
6. Assume that E is a finite extension of a field F that is contained in \bar{F}. Prove that if $\{E: F\}=|G(E / F)|$, then E is a splitting field over F. (This is a partial converse of Corollary 50.7.)
7. Let E be the splitting field of $f(x)=x^{3}-3 x+1$ over \mathbb{Q}. Determine the group $G(E / \mathbb{Q})$. (Hint: Show that if α is a zero of f, then so is $\alpha^{2}-2$.)
8. Prove that the splitting field of $x^{p}-1$ (where p is a prime) over \mathbb{Q} is an extension of \mathbb{Q} of degree $p-1$. (Hint: Section 23.)
9. (Honors only!) Find the splitting field of $x^{p}-2$ (where p is a prime) over \mathbb{Q}, and prove that it is an extension of \mathbb{Q} of degree $p(p-1)$.
10. (Honors only!) Section $50 \# 16$ (Note: there is a typo in the book; ' $G(E / F)$ ' should be ' $G(K / F)$ '.)
11. (Honors only!) Prove or disprove: if E is a splitting field of a field F, then there exists a unique isomorphism of E that extends the identity map on F.
12. (Honors only!) Let E / F be an extension. Prove that if $[E: F]=2$, then E is a splitting field over F.
