Homework 11

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on FRIDAY, April 7 at noon¹. Write your section number on the top of your homework.

- 0. (This problem is not to be turned in.)
 - (a) Read Section 51
 - (b) (Practice Problems) Section 51 #7, 11
- 1. True/False. (You do not need to give proofs for this problem.)
 - (a) A finite extension K/F is a simple extension if and only if G(K/F) is a simple group.
 - (b) Every finite extension of a perfect field is simple.
 - (c) $\mathbb{Q}(i, \sqrt[3]{2})$ is a splitting field of $\mathbb{Q}(\sqrt[3]{2})$.
 - (d) If K is a splitting field of F, then every $f \in F[x]$ splits completely into linear factors in K[x].
 - (e) For any field F, every reducible polynomial $f \in F[x]$ has a root in F.
- 2. Section 51 #8, 14
- 3. Let *E* be the splitting field of $f(x) = x^3 3x + 1$ over \mathbb{Q} (which you analyzed on HW 10, #7). Is there an automorphism of *E* for which exactly one root of $f(x) = x^3 3x + 1$ is fixed? Explain.
- 4. Is there an automorphism of the splitting field of $g(x) = x^3 4$ over \mathbb{Q} for which exactly one root of g is fixed? Explain.
- 5. Consider field extensions $F \subset E \subset \overline{F}$. Let $\alpha \in \overline{F}$. Prove or disprove: if α is separable over F, then α is separable over E.
- 6. Prove or disprove: for a field F, the following is a subfield of \overline{F} :

$$\{\alpha \in \overline{F} \mid \alpha \text{ is separable over } F\}$$
.

- 7. (Honors only!) Find $\alpha \in \overline{\mathbb{Q}}$ such that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt[4]{2}, i)$. Prove your answer.
- 8. (Honors only!) Prove your answers to the True/False above.

¹You may turn in your homework to Blocker 601 E