Homework 13

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on Thursday, April 20. Write your section number on the top of your homework.

- 0. (This problem is not to be turned in.)
 - (a) Read Section 53
 - (b) (Practice Problems) Section 53 # 9, 11
 - (c) Complete the following sentence, and give a proof: For $\alpha, \beta \in \overline{\mathbb{Q}}$, there exists an automorphism of $\overline{\mathbb{Q}}$ that fixes α but does *not* fix β if and only if
 - (d) Prove that any one-to-one homomorphism $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ is an automorphism.
 - (e) Prove or disprove: $\overline{\mathbb{Q}} = \mathbb{C}$.
 - (f) Are $\pm \sqrt[3]{2}$ conjugates over \mathbb{Q} ?
- 1. Section 53 #1-8, 15, 16
- 2. Give an example of a field extension $F \subset E$ such that the group G(E/F) is not abelian.
- 3. Assume that K is a finite normal extension of a field F of degree $p^n m$, where p is a prime number. Prove that there exist fields $F \subset E_1 \subset E_2 \subset \cdots \subset E_n \subset K$ with $[K : E_i] = p^{n-i+1}$ for $i = 1, 2, \ldots, n$.
- 4. Assume that K is a finite normal extension of a field F with Galois group G := G(K/F). Assume that $|G| \neq 1$ and $|G| \neq p$ for any prime number p. Also, assume that for every subfield E with $F \subsetneq E \subsetneq K$, E is not a normal extension of F. Prove that for all prime numbers p that divide |G|, the group G has more than one Sylow p-subgroup.
- 5. (a) Write down a normal degree-3 extension of Q. Explain. (Hint: a previous homework.)
 (b) Write down a degree-3 extension of Q that is *not* a normal extension. Explain.
- 6. Let K/F be a Galois extension with $G(K/F) \cong A_4$. Prove that there is *no* intermediate field $F \subseteq E \subseteq K$ with [E:F] = 2.
- 7. (Honors only!) Consider a degree-2 extension of a field that is not of characteristic 2. Prove that this is a normal extension.
- 8. (Honors only!) Assume that K is a finite normal extension of a field F with Galois group G := G(K/F). Assume that K has *exactly* two distinct subfields E_1 and E_2 such that $F \subsetneq E_1, E_2 \subsetneq K$, and assume that E_1 and E_2 are both normal extensions of F. Prove that G is a cyclic group. (Hint: Section 37.)
- 9. (Honors only!)
 - (a) Let K be a field, and let $f \in K[x]$ be a separable polynomial of degree n. Let L be the splitting field of f over K. Show that $\operatorname{Gal}(L/K)$ is isomorphic to a subgroup of S_n , and deduce that [L:K]|n!.
 - (b) Let $K = \mathbb{Q}$ and n = 3 in part (a). Prove that if f is irreducible in $\mathbb{Q}[x]$ and has exactly one real root, then $\operatorname{Gal}(L/\mathbb{Q}) \cong S_3$.