Homework 14 (the last one)

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on Thursday, April 27. Write your section number on the top of your homework.

- 0. (This problem is not to be turned in.) Read Section 54
- 1. Suggest a problem for the final exam that pertains to Galois Theory.
- 2. True/False. (You do not need to give proofs for this problem.)
 - (a) If $\alpha^2 = \beta^2$, then $F(\alpha) = F(\beta)$.
 - (b) The splitting field for $x^3 2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{2}, i)$.
 - (c) $\mathbb{F}_{p^n} \cap \mathbb{F}_{p^m} = \mathbb{F}_{p^{\text{gcd}(n,m)}}.$
 - (d) For any extension K/F, every automorphism of K restricts to an automorphism of F.
- 3. Complete the following:

Claim: Let F be a finite field of order p^r (where p is a prime number). Let K be a degree-n extension of F (where n is a positive integer). Then K is normal over F, and G(K/F) is the cyclic group of order _____ generated by _____.

- 4. Prove that a finite normal extension K over F has no intermediate fields if and only if the degree [K : F] is a prime number.
- 5. Let $F := \mathbb{Q}(i)$, and let $E := \mathbb{Q}(i, \sqrt[4]{2})$.
 - (a) What is the index $\{E : F\}$? Explain.
 - (b) What is a basis of E as an vector space over F? (You do *not* need to give a proof.)
 - (c) Is E a normal extension of F? Explain.
 - (d) Determine the group G(E/F), and draw the diagram of all intermediate fields L with $F \subset L \subset E$. Give a proof.
- 6. Let K be the splitting field of $(x^2 2)(x^2 3)(x^2 5)$ over \mathbb{Q} .
 - (a) Compute $[K : \mathbb{Q}]$, and state a basis of K as a vector space over \mathbb{Q} .
 - (b) Is K a normal extension of \mathbb{Q} ? Explain.
 - (c) Which group is $G(K/\mathbb{Q})$ isomorphic to? Give a generating set of $G(K/\mathbb{Q})$. Explain.
 - (d) Is there a subgroup H of $G(K/\mathbb{Q})$ for which the fixed field K_H equals $\mathbb{Q}(\sqrt{15})$? If yes, find it. If no, explain why not.

- 7. Assume that K is a normal extension of F, and G(K/F) is isomorphic to S_4 . How many fields E are there for which $F \subset E \subset K$ and [K : E] = 2? (You may look up and use any information about S_4 .)
- 8. Assume that $F \subset K$ is a field extension where $|F| = 3^2$ and $|K| = 3^{40}$. Give the subfield diagram for the subfields E where $F \subset E \subset K$.
- 9. (Honors only!) Assume that F is a finite field. Assume that $F \subset E \subset \overline{F}$ is a field extension. Prove that E is a splitting field over F. (Do not assume that E is finite over F.)
- 10. (Honors only!) Prove or disprove: For any subfield K of \mathbb{C} , the complex-conjugation automorphism of \mathbb{C} restricts to an automorphism of K.