Homework 3

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on Thursday, February 2. As a reminder, please write your section number on the top of your homework.

- 0. (This problem is not to be turned in.)
 - (a) (Practice Problems) Section 26 # 29, 34
 - (b) (Practice Problems) Section 27 # 26
- 1. Section 27 # 30
- 2. Complete the following sentences:
 - (a) The ideal $n\mathbb{Z}$ is a **prime** ideal of \mathbb{Z} if and only if _____.
 - (b) The ideal $n\mathbb{Z}$ is a **maximal** ideal of \mathbb{Z} if and only if _____.
- 3. (a) Is the ideal (2x, 3) a principal ideal of Q[x]? Prove your answer.
 (b) Is the ideal (2x, 3) a principal ideal of Z[x]? Prove your answer.
- 4. Consider $\mathbb{R}[x]$, the ring of polynomials with real coefficients. Let

 $N := \{ f \in \mathbb{R}[x] \mid f(5) = f(7) = 0 \} .$

Is N a prime ideal of $\mathbb{R}[x]$? Give a proof.

5. (a) Determine whether the following ring is a field, and give a proof:

 $\mathbb{Q}[x,y]/\langle y-1, x+y+2\rangle.$

(Recall that $\mathbb{Q}[x, y]$ is the ring of polynomials in two variables, x, and y; one such polynomial is $f(x) = x^3y - 1/3$.)

- (b) Is the ideal $\langle y 1, x + y + 2 \rangle$ a maximal ideal of $\mathbb{Q}[x, y]$? Is it a prime ideal? Explain your answers.
- 6. Let P be a prime ideal in a ring R, and assume that P contains the intersection of two ideals I and J. Prove that P contains I or P contains J.
- 7. (a) Prove or disprove the following:
 Claim: Let I be an ideal of a ring R. If every ideal of R that contains I is a principal ideal, then every ideal of R/I is a principal ideal. (*Hint:* Use #7 from Homework 2.)
 - (b) (Honors only!) Prove or disprove the following:
 Claim: Let I be an ideal of a ring R. If every ideal of R/I is a principal ideal, then every ideal of R that contains I is a principal ideal.

- 8. (Honors only!) Let R be a commutative ring with unity $1 \neq 0$. Prove that if R[x] is an integral domain in which every ideal is a principal ideal, then R is a field.
- 9. (Honors only!) We know from class that every ideal in $\mathbb{Q}[x]$ is a principal ideal. Show directly (by finding a generator and proving your answer) that the following ideals are principal: $I = \langle x^2 + 1, x 6 \rangle$ and $J = \langle x^3 + 3x, 5x^2 + 15 \rangle$.