Homework 3

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on Thursday, February 2. As a reminder, please write your section number on the top of your homework.
0. (This problem is not to be turned in.)
(a) (Practice Problems) Section $26 \# 29,34$
(b) (Practice Problems) Section $27 \# 26$

1. Section $27 \# 30$
2. Complete the following sentences:
(a) The ideal $n \mathbb{Z}$ is a prime ideal of \mathbb{Z} if and only if \qquad .
(b) The ideal $n \mathbb{Z}$ is a maximal ideal of \mathbb{Z} if and only if \qquad .
3. (a) Is the ideal $\langle 2 x, 3\rangle$ a principal ideal of $\mathbb{Q}[x]$? Prove your answer.
(b) Is the ideal $\langle 2 x, 3\rangle$ a principal ideal of $\mathbb{Z}[x]$? Prove your answer.
4. Consider $\mathbb{R}[x]$, the ring of polynomials with real coefficients. Let

$$
N:=\{f \in \mathbb{R}[x] \mid f(5)=f(7)=0\}
$$

Is N a prime ideal of $\mathbb{R}[x]$? Give a proof.
5. (a) Determine whether the following ring is a field, and give a proof:

$$
\mathbb{Q}[x, y] /\langle y-1, x+y+2\rangle .
$$

(Recall that $\mathbb{Q}[x, y]$ is the ring of polynomials in two variables, x, and y; one such polynomial is $f(x)=x^{3} y-1 / 3$.)
(b) Is the ideal $\langle y-1, x+y+2\rangle$ a maximal ideal of $\mathbb{Q}[x, y]$? Is it a prime ideal? Explain your answers.
6. Let P be a prime ideal in a ring R, and assume that P contains the intersection of two ideals I and J. Prove that P contains I or P contains J.
7. (a) Prove or disprove the following:

Claim: Let I be an ideal of a ring R. If every ideal of R that contains I is a principal ideal, then every ideal of R / I is a principal ideal. (Hint: Use $\# 7$ from Homework 2.)
(b) (Honors only!) Prove or disprove the following:

Claim: Let I be an ideal of a ring R. If every ideal of R / I is a principal ideal, then every ideal of R that contains I is a principal ideal.
8. (Honors only!) Let R be a commutative ring with unity $1 \neq 0$. Prove that if $R[x]$ is an integral domain in which every ideal is a principal ideal, then R is a field.
9. (Honors only!) We know from class that every ideal in $\mathbb{Q}[x]$ is a principal ideal. Show directly (by finding a generator and proving your answer) that the following ideals are principal: $I=\left\langle x^{2}+1, x-6\right\rangle$ and $J=\left\langle x^{3}+3 x, 5 x^{2}+15\right\rangle$.

