Homework 5

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on Thursday, February 16. As a reminder, please write your section number on the top of your homework.
0. (This problem is not to be turned in.)
(a) Read Sections 31 and 33
(b) (Practice Problems) Section $31 \# 8,10,22,26$
(c) (Practice Problems) Section $33 \# 9,11,12,13$
(d) Compute the irreducible polynomial of $\frac{1}{11+\sqrt{3}}$ over the field $\mathbb{Q}(\sqrt{3})$.

1. (a) Are $\mathbb{Q}(1+\sqrt{5})$ and $\mathbb{Q}(\sqrt{5})$ isomorphic fields? Explain your answer.
(b) Are $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{5})$ isomorphic fields? Explain your answer.
2. (a) How many $\left(3^{3}-1\right)^{\text {st }}$ (i.e., 26th) roots of unity does $G F\left(3^{3}\right)$ contain?
(b) How many primitive $\left(3^{3}-1\right)^{\text {st }}$ (i.e., 26 th) roots of unity does $G F\left(3^{3}\right)$ contain?
(c) How many elements $\alpha \in G F\left(3^{3}\right)$ are there for which $G F\left(3^{3}\right)=\mathbb{Z}_{3}(\alpha)$?
3. Prove that for a field F, the following are equivalent:
(i) F is algebraically closed,
(ii) every nonconstant polynomial $f \in F[x]$ factors as a product of linear factors in $F[x]$, and
(iii) every (nonconstant) irreducible polynomial is linear (degree 1).
4. For an element α in a field extension of a field F, prove that if $[F(\alpha): F]$ is an odd number, then $F(\alpha)=F\left(\alpha^{2}\right)$. Give a proof.
5. Let E and K be two field extensions of a field F. Assume that $\alpha \in E$ and $\beta \in K$ are both algebraic over F. Prove that $\operatorname{irr}(\alpha, F)=\operatorname{irr}(\beta, F)$ if and only if there exists an isomorphism $\phi: F(\alpha) \rightarrow F(\beta)$ such that $\phi(\alpha)=\beta$ and $\left.\phi\right|_{F}$ is the identity map of F.
6. Section $31 \# 19,30$
7. Section $33 \# 8,10$
8. (a) Is there a field of order 60 ? Explain your answer.
(b) Compute $\left[G F\left(2^{4}\right): \mathbb{Z}_{2}\right]$. Explain your answer.
(c) Prove that if $G F\left(p^{m}\right) \subseteq G F\left(p^{n}\right)$, then m divides n.
(d) (Honors only!) Prove the converse of part (c).
9. (Honors only!) Is $\mathbb{Q}\left(x^{2}, x^{3}\right)$ a simple extension of \mathbb{Q} ? Explain.
10. (Honors only!) A finite subset $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ of a field extension E of a field F is algebraically independent over F if there is no nonzero polynomial $f \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for which $f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=0$.
(a) Is $\left\{x^{2}, x y, y\right\} \subset \mathbb{Q}(x, y)$ algebraically independent over \mathbb{Q} ? Explain.
(b) Is $\left\{x^{2}, x y\right\} \subset \mathbb{Q}(x, y)$ algebraically independent over \mathbb{Q} ? Explain.
(c) Prove that a finite subset of E that is algebraically independent does not contain any element that is algebraic over F.
11. (Honors only!) Use Zorn's Lemma to prove:
(i) Every ring with 1 contains a maximal ideal.
(ii) Let W be a subspace of a vector space V. Then there exists a linear transformation $V \rightarrow V$ for which the kernel is W.
