Homework 7

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on Thursday, March 2. Write your section number on top of your homework.
0. (This problem is not to be turned in.)
(a) Read Section 16
(b) (Practice Problems) Section $16 \# 7,13$

1. Section $16 \# 8,12$
2. Determine whether the following operations define group actions. Prove your answers.
(a) $\mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ given by $(a, x) \mapsto x-a$
(b) $\mathbb{Z}_{9} \times \mathbb{R} \rightarrow \mathbb{R}$ given by $(\bar{a}, x) \mapsto x-a$, where $\mathbb{Z}_{9}=\{\overline{0}, \overline{1}, \ldots, \overline{8}\}$.
(c) $\mathbb{Q}[x] \times \mathbb{Q} \rightarrow \mathbb{Q}$ given by $(f, a) \mapsto f(a)$, where we recall that $\mathbb{Q}[x]$ is a group under addition.
3. Let $M_{n}(\mathbb{Q})$ denote the $n \times n$-matrices with entries in \mathbb{Q}. Let $G L_{n}(\mathbb{Q})$ denote the invertible $n \times n$-matrices with entries in \mathbb{Q}.
(a) Which operation makes $G L_{n}(\mathbb{Q})$ into a group? (No proof necessary.)
(b) Prove that conjugation defines a $G L_{n}(\mathbb{Q})$-action on $M_{n}(\mathbb{Q})$.
(c) Let $B \in M_{n}(\mathbb{Q})$. Prove that B is diagonalizable over \mathbb{Q} if and only if every matrix C in the orbit of B is diagonalizable over \mathbb{Q}.
4. Consider the ring $R=\mathbb{Z}_{2}[x] /\left\langle x^{3}+x^{2}+1\right\rangle$.
(a) Is R a field? What is the order (size) of R ? Explain.
(b) Is R isomorphic to $G F\left(2^{3}\right)$? Explain.
(c) Which group is $\left(R^{*}, \cdot\right)$ isomorphic to? Explain.
(d) Which group is $(R,+)$ isomorphic to? Prove your answer.
5. (Honors only!)
(a) Let $f \in \mathbb{Z}_{p}[x]$ be an irreducible polynomial of degree d. For any integer $n \geq 1$, prove that $f \mid x^{p^{n}}-x$ if and only if $d \mid n$.
(Hint: consider an extension of \mathbb{Z}_{p} that contains a root of f.)
(b) Show that for any positive integer n, the polynomial $x^{p^{n}}-x \in \mathbb{Z}_{p}[x]$ factors into irreducibles as

$$
x^{p^{n}}-x=\prod_{d \mid n} \prod_{\substack{f \in \mathbb{Z}_{p}[x] \\ f \text { monic and ireducible in } \\ \operatorname{deg} f=d}} f(x)
$$

(c) Let $g \in \mathbb{Z}_{p}[x]$ be any polynomial of degree n. Prove that g is irreducible in $\mathbb{Z}_{p}[x]$ if and only if $g \mid x^{p^{n}}-x$ and $\operatorname{gcd}\left(g, x^{p^{d}}-x\right)=1$ for all positive integers d with $d \mid n$ and $d<n$.

