Homework 7

Math 416 (sections 200 [Honors] and 500 [Regular]), Spring 2017

This homework is due on Thursday, March 2. Write your section number on top of your homework.

- 0. (This problem is not to be turned in.)
 - (a) Read Section 16
 - (b) (Practice Problems) Section 16 #7, 13
- 1. Section 16 # 8, 12
- 2. Determine whether the following operations define group actions. Prove your answers.
 - (a) $\mathbb{Z} \times \mathbb{R} \to \mathbb{R}$ given by $(a, x) \mapsto x a$
 - (b) $\mathbb{Z}_9 \times \mathbb{R} \to \mathbb{R}$ given by $(\bar{a}, x) \mapsto x a$, where $\mathbb{Z}_9 = \{\bar{0}, \bar{1}, \dots, \bar{8}\}$.
 - (c) $\mathbb{Q}[x] \times \mathbb{Q} \to \mathbb{Q}$ given by $(f, a) \mapsto f(a)$, where we recall that $\mathbb{Q}[x]$ is a group under addition.
- 3. Let $M_n(\mathbb{Q})$ denote the $n \times n$ -matrices with entries in \mathbb{Q} . Let $GL_n(\mathbb{Q})$ denote the *invertible* $n \times n$ -matrices with entries in \mathbb{Q} .
 - (a) Which operation makes $GL_n(\mathbb{Q})$ into a group? (No proof necessary.)
 - (b) Prove that conjugation defines a $GL_n(\mathbb{Q})$ -action on $M_n(\mathbb{Q})$.
 - (c) Let $B \in M_n(\mathbb{Q})$. Prove that B is diagonalizable over \mathbb{Q} if and only if every matrix C in the orbit of B is diagonalizable over \mathbb{Q} .
- 4. Consider the ring $R = \mathbb{Z}_2[x]/\langle x^3 + x^2 + 1 \rangle$.
 - (a) Is R a field? What is the order (size) of R? Explain.
 - (b) Is R isomorphic to $GF(2^3)$? Explain.
 - (c) Which group is (R^*, \cdot) isomorphic to? Explain.
 - (d) Which group is (R, +) isomorphic to? Prove your answer.
- 5. (Honors only!)
 - (a) Let $f \in \mathbb{Z}_p[x]$ be an irreducible polynomial of degree d. For any integer $n \ge 1$, prove that $f|x^{p^n} x$ if and only if d|n.

(*Hint*: consider an extension of \mathbb{Z}_p that contains a root of f.)

(b) Show that for any positive integer n, the polynomial $x^{p^n} - x \in \mathbb{Z}_p[x]$ factors into irreducibles as

$$x^{p^{n}} - x = \prod_{\substack{d|n \\ f \text{ monic and irreducible in } \mathbb{Z}_{p}[x]}} \prod_{\substack{f \in \mathbb{Z}_{p}[x] \\ \deg f = d}} f(x)$$

(c) Let $g \in \mathbb{Z}_p[x]$ be any polynomial of degree n. Prove that g is irreducible in $\mathbb{Z}_p[x]$ if and only if $g|x^{p^n} - x$ and $gcd(g, x^{p^d} - x) = 1$ for all positive integers d with d|n and d < n.