Genome Reconstruction: A Puzzle with a Billion Pieces
Phillip E. C. Compeau and Pavel A. Pevzner
Outline

I. Problem
II. Two Historical Detours
III. Example
IV. The Mathematics of DNA Sequencing
V. Complications
Problem: Given DNA, how do we find the nucleotide sequence?

• Reduces to two problems:
 1. Read generation (Biological)
 2. Fragment Assembly (Algorithmic/Mathematical)
Introduction to DNA Sequencing

• Four Nucleotides: A, G, C, T
• No known way to read DNA one nucleotide at a time
• Current technology can only 'read' short segments of DNA
 - At most approximately 100 nucleotides in length
 - Short fragments of length k are called k-mers
• Biologists generate these k-mers starting at every nucleotide
• Then use mathematics to attempt to recover the sequence by solving a giant overlap puzzle
Brief Introduction to Read Generation

- First synthesize all possible 3-mers
- Attach these to a grid on which each 1-mer is assigned a unique location
- Take the DNA fragment and fluorescently label it
- Apply this to the DNA array
- Read the complements of fluorescent grids

<table>
<thead>
<tr>
<th>AAA</th>
<th>AGA</th>
<th>CAA</th>
<th>CGA</th>
<th>GAA</th>
<th>GGA</th>
<th>TAA</th>
<th>TGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>AGC</td>
<td>CAC</td>
<td>CGC</td>
<td>GAC</td>
<td>GGC</td>
<td>TAC</td>
<td>TGC</td>
</tr>
<tr>
<td>AAG</td>
<td>AGG</td>
<td>CAG</td>
<td>CGG</td>
<td>GAG</td>
<td>GGG</td>
<td>TAG</td>
<td>TGG</td>
</tr>
<tr>
<td>AAT</td>
<td>AGT</td>
<td>CAT</td>
<td>CGT</td>
<td>GAT</td>
<td>GGT</td>
<td>TAT</td>
<td>TGT</td>
</tr>
<tr>
<td>ACA</td>
<td>ATA</td>
<td>CCA</td>
<td>CTA</td>
<td>GCA</td>
<td>GTA</td>
<td>TCA</td>
<td>TTA</td>
</tr>
<tr>
<td>ACC</td>
<td>ATC</td>
<td>CCC</td>
<td>CTC</td>
<td>GCC</td>
<td>GTC</td>
<td>TCC</td>
<td>TTC</td>
</tr>
<tr>
<td>ACG</td>
<td>ATG</td>
<td>CCG</td>
<td>CTG</td>
<td>GCG</td>
<td>GTG</td>
<td>TCG</td>
<td>TTG</td>
</tr>
<tr>
<td>ACT</td>
<td>ATT</td>
<td>CCT</td>
<td>CTT</td>
<td>GCT</td>
<td>GTT</td>
<td>TCT</td>
<td>TTT</td>
</tr>
</tbody>
</table>
a) Map of Konigsberg. b) The graph formed by compressing each land mass into a vertex and representing each bridge by an edge.

Konigsberg Bridge Problem

• Problem: Is there a walk that traverses each bridge exactly once?

• Euler solved this problem in the 18th century and spawned the branch of mathematics known as Graph Theory.
Hamilton's Game
Simplifying assumptions:
1. The genome we are reconstructing is cyclic.
2. Every read has the same length.
3. All possible substrings of length \(l \) occurring in our genome have been generated as reads.
4. The reads have been generated without any errors.
Example

• Suppose we have the sequence:
 TAATGCCATGGGATGTT

• From this sequence, we yield the 3-mers:
 TAA, AAT, ATG, TGC, GCC, CCA, CAT, ATG, TGG, GGG, GGA, GAT, ATG, TGT, GTT

• We construct a graph from these 3-mers by:
 1. Using the 3-mers as vertices.
 2. Placing a directed edge from vertex 1, \((v1) \), to vertex 2, \((v2) \) if the prefix of \(v2 \) is the suffix of \(v1 \).
Example

- Prefix of AAT is AA while suffix of TAA is AA, etc.
In practice, k-mers are given in lexicographic order:
AAT, ATG, ATG, ATG, CAT, CCA, GAT, GCC, GGA, GGG, GTT, TAA, TGC, TGG, TGT

We again use the 3-mers as nodes.

Now we connect two nodes from one to another if the suffix is same as prefix.

For example, we connect AAT to all ATG nodes.

We yield a new graph that looks as follows.

The goal is now to find a path in the graph that passes through every node exactly once. (Hamiltonian Problem)
Example
Building the Path
Sequence then becomes:

TAATGCCCATGGGGATGTT
Example Revisited

We now approach sequence generation in a new way.

• Start again with the sequence:
 TAATGCCCATGGGATGTT

• Generate 3-mers again:
 TAA, AAT, ATG, TGC, GCC, CCA, CAT, ATG, TGG, GGG, GGA, GAT, ATG, TGT, GTT

• The 3-mers now become the *edges* while the prefixes and suffixes become the *nodes*.
Example Revisited

- **TA** is the prefix of a 3-mer with **AA** as the suffix, so it is connected by an edge labeled by the 3-mer **TAT**, etc.
- The next step is to paste together *nodes* that are the same.
Eulerian Problem

• The goal now is to find a path through the graph that passes through every edge exactly once. (Eulerian Problem)

• When this path is found, concatenate the edges to retrieve the sequence.
When we read the *edges* back, we recover the sequence:

TAATGCCATGGGATGTT
The Million Dollar Question

Is the Hamiltonian Problem or the Eulerian Problem easier to solve?
Million Dollar Question

• Turns out that the Hamiltonian Problem is intractable
 - NP-complete
 - You can literally win a million dollars by solving it
 - Hamiltonian strategy still used to sequence the Human Genome and others before 2001

• Eulerian Problem is very easy to solve
 - Proof of Euler's Theorem gives you a very nice algorithm to find the cycle
Euler's Theorem

Theorem: A directed, connected, and finite graph G has an Eulerian cycle if and only if, for every vertex v in G, the indegree and the outdegree of v are equal.
Complications

• Eulerian Cycle found might not be unique
 – In our example there is also a cycle that generates the sequence:
 TAATGGGATGCCATGTT

• How does the problem change when the sequence is not cyclic, but rather, a linear DNA sequence?

• How do we adjust for errors in the read generation?
Thank You for Listening. Any Questions?