Homework 5
Math 147 (section 510–511-512), Fall 2014

This homework is due on Thursday, October 2.

-1. Read Sections 3.5 and 4.1. After reading these sections, you should be able to answer the following questions (which are not to be turned in).

 - The Intermediate-Value Theorem guarantees (under certain hypotheses) the existence of a number \(c \) with \(a < c < b \) such that \(f(c) = L \). Does it tell you where in the interval \((a, b)\) the number \(c \) is, or how many such \(c \) exist?
 - What is a secant line? What is a tangent line?
 - What is the derivative of a constant function? The derivative of a linear function?
 - What is the difference between velocity and speed?
 - Are functions with “corners” differentiable?
 - Is a function with a vertical tangent line at \(x = 12 \) differentiable at \(x = 12 \)?
 - What is the instantaneous per capita growth rate?

0. Re-read Examples 9 and 10 from Section 1.2 (pages 25–27). After reading these sections, you should be able to answer the following questions (not to be turned in).

 - In exponential growth functions \(N(t) = N_0 \cdot b^t \), what is the interpretation of \(N_0 \) and \(b \)?
 - In radioactive decay (exponential decay) modeled by \(W(t) = W_0 \cdot e^{-\lambda t} \), what is the interpretation of \(W_0 \) and \(\lambda \)? What is a formula for the half-life?

1. Let \(r \) be a positive integer, and let \(c_0, c_1, \ldots, c_r \) be positive real numbers. Consider the polynomial \(f(x) = c_r x^r + c_{r-1} x^{r-1} + \cdots + c_1 x - c_0 \).

 (a) Evaluate \(\lim_{x \to \infty} f(x) \).
 (b) Use the Intermediate-Value Theorem to explain why \(f(x) \) has a positive root.

2. Section 3.5 # 5, 8

3. Section 4.1 # 10, 20, 26, 29, 38, 40, 44

4. (These problems are not to be turned in!)

 (a) Section 3.5 # 1, 4, 7
 (b) Section 4.1 # 13, 17, 21, 23, 27, 30, 37, 41, 45, 49, 51, 53, 55

Reminder: The first exam is on Thursday, October 2, from 7:30pm to 9:30pm, in RICH 106. Please bring pencils and a 15-question scantron form. The topics for the exam are from Sections 1.1–1.3, 3.1–3.5, 4.1.