1. Find the area bounded by $y = \cos x$, $y = 0$, $x = 0$, $x = \frac{\pi}{3}$.

2. Find the area bounded by $y = \sin x$, $y = 0$, $x = \frac{\pi}{4}$, $x = \frac{3\pi}{2}$.
3. Find the area bounded by \(y = x^2 \) and \(y = 2x - x^2 \).
4. Find the area bounded by $y = x - 1$ and $y^2 = 2x + 6$.
5. Find the area bounded by $y = \sin x$, $y = \cos x$, $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$.
6. Find the area bounded by $y = |2 - x^2|$, $y = 0$, $x = 0$, $x = 2$.

7. Find the volume of the solid obtained by revolving the region bounded by \(y = e^x \), \(y = 0 \), \(x = 0 \), \(x = 1 \) about the \(x \)-axis.
8. Find the volume of the solid obtained by revolving the region bounded by \(y = 3x^2 \), \(0 \leq x \leq 2 \), \(y = 12 \) and \(x = 0 \) about the \(y \)-axis.
9. Find the volume of the solid obtained by revolving the region bounded by \(y = x^2, \ y = 4x, \) about the \(x \)-axis, then the \(y \) axis.
10. Find the volume of the solid obtained by revolving the region bounded by $y = x^2$, $y = 4$, about the line $y = 4$.
11. Find the volume of the solid obtained by revolving the region bounded by $x = y^2, x = 1$, about the line $x = 1$.
12. Find the volume of the solid obtained by revolving the region bounded by $y = x$, $y = \sqrt{x}$, about the line $x = 2$.
13. Find the volume of the solid S described here: The base of S is the region bounded by $y = x^2$ and $y = 4$. Cross-sections perpendicular to the y axis are squares.
14. Find the volume of the solid S described here: The base of S is the triangular region with vertices $(0, 0)$, $(3, 0)$ and $(0, 2)$. Cross-sections perpendicular to the x axis are semi-circles.
15. Find the volume of the solid obtained by rotating the region bounded by the given curve(s) about the specified axis.

a.) \(y = \frac{1}{x^2}, \ x = 2, \ x = 4, \ y = 0 \) about the \(y \) axis.
b.) \(y = x^2, \ y = 16, \ x = 0 \) about the \(x \)-axis.
c.) \(y = x^2, y = 3x \). Rotate around the \(x \)-axis. Now rotate around the \(y \) axis.
d.) $y = x^3$, $y = 0$, $x = 1$, $x = 2$. Rotate around the line $x = -1$.
e.) \(y = \sqrt{x}, \ x = 0, \ x = 4, \ y = 0. \) Rotate around the line \(y = 3. \)
f.) $y = \ln x$, $y = 0$, $x = 4$ about the y axis. Do not evaluate the integral.