©Amy Austin, Texas A&M University

Spring 2013 Math 152

Overview of Material for Test III courtesy: Amy Austin

Integral Test, Comparison Tests

1. Integral Test: If f(x) is a positive, continuous, decreasing function on $[k, \infty]$, where k is a non-negative integer,

and $a_n = f(n)$. Then $\sum_{n=k}^{\infty} a_n$ and $\int_k^{\infty} f(x) dx$ either both converge or both diverge.

"If the improper integral converges, so does the series. If the improper integral diverges, so does the series".

TIP: Use the integral test if the terms of the series are positive, decreasing and integrable.

- 2. Comparison Test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{i=1}^{\infty} b_n$ are series of positive terms.
 - If $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ is also convergent. "If the larger series converges, so does the smaller series".

• If $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ is also divergent. "If the smaller series diverges, so does the larger series".

TIP: Use the comparison test if the terms of the series are positive and are comparable to a p-series or geometric series.

3. Limit Comparison Test: If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then either both series converge or both series diverge.

TIP: Use the limit comparison test if the terms of the series are positive and are comparable to a p-series or geometric series, however the inequality may not point in the right direction for the comparison test to be conclusive.

4. Remainder Estimate: Suppose $s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$ is the n^{th} partial sum of the convergent series $\sum_{n=1}^{\infty} a_n$, where $a_n > 0$. Then the **remainder** in using s_n to approximate the sum S is defined to be

 $R_n = S - s_n = \sum_{i=n+1}^{\infty} a_i = a_{n+1} + a_{n+2} + \dots$

Moreover, if $\sum_{n=1}^{\infty} a_n$ was shown to be convergent by the integral test or a comparison test (where $a_n = f(n)$), then

$$R_n = \sum_{i=n+1}^{\infty} a_i \le \int_n^{\infty} f(x) \, dx.$$

Alternating series, Ratio Test and Remainders

- 5. The Alternating Series Test: The alternating series $\sum_{n=k}^{\infty} (-1)^n a_n$, where $a_n > 0$, converges if it satisfies both conditions given below:
 - $a_{n+1} \leq a_n$ (if the sequence $\{a_n\}$ is decreasing).
 - $\lim_{n \to \infty} a_n = 0$

TIP: Use the alternating series test if the series is an alternating series which fails the test for divergence.

6. Def: A series is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ con-

verges. If $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} |a_n|$ diverges, then the series is **conditionally convergent**. To test for absolute convergence, you either use the Ratio Test (see conditions below) or test $\sum_{n=1}^{\infty} |a_n|$ for convergence, which usually involves the p - series test, integral test or comparison test. Note: If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.

7. The Ratio Test:

• If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).

• If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

• If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, then the test fails (ie is inconclusive).

Tip: Use the ratio test if the series contains either or a factorial or an exponential (or both).

8. Remainder Estimate and The Alternating Series Theorem

If $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n > 0$, is a convergent alternating series, and a partial sum

 $s_n = \sum_{i=1}^n (-1)^i a_i$ is used to approximate the sum of the series with remainder R_n , then $|R_n| \le a_{n+1}$.

Power Series

9. Def: A Power Series is a series of the form

 $\sum_{n=1}^{\infty} c_n (x-a)^n$, where x is the variable and the c_n 's are called the coefficients of the series. More generally, $\sum_{n=1}^{\infty} c_n (x-a)^n$ is called a power series *centered* at x = a, or a power series *about* a. Specifically, $\sum_{n=1}^{\infty} c_n x^n$ is a power series centered at zero.

Moreover, the set of all values of x for which the series converges is called **the interval of convergence**, denoted by I. The **radius of convergence** is $R = \frac{1}{2}$ of the length of I. "The radius of convergence is the maximum distance you deviate from the center to have convergence".

10. **Theorem:** For a given power series $\sum_{n=1}^{\infty} c_n (x-a)^n$ there are only three possibilities:

(i) The series converges only for x = a, in which case $I = \{a\}$ and R = 0.

(ii) The series converges for all x, in which case

 $I = (-\infty, \infty)$ and $R = \infty$.

(iii) There is a positive number R such that the series converges if |x - a| < R and diverges if |x - a| > R, in which case I = (a - R, a + R) (test the end points for convergence) and the radius of convergence is R. In order to find the radius of convergence, apply the ratio test.

Representing Functions as Power Series

11. If |x| < 1, then $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

- 12. **Theorem:** If $f(x) = \sum_{n=0}^{\infty} c_n x^n$ has a radius of convergence R, then
 - a.) $f'(x) = \sum_{n=1}^{\infty} c_n n x^{n-1}$ and has a radius of convergence R.
 - b.) $\int f(x) dx = C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$ and has a radius of convergence R.
- 13. To find a power series representation for a function of the form $\ln(ax + b)$, first take the derivative of the function, then integrate its power series representation.
- 14. To find a power series representation for a function of the form $\frac{1}{(1+x)^2}$, first integrate the function, then take the derivative of its power series representation.

Taylor and Maclaurin Series

15. The **Taylor Series** of f(x) at x = a is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + ...$

16. The Maclaurin series is the Taylor series about 0, that is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

= $f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + ...$

17. Known Maclaurin series. Have these Maclaurin series memorized and know when to use them.

(a)
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 \dots$$
, provided $-1 < x < 1$.

(b)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$
, provided $-\infty < x < \infty$.

(c)
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots,$$

provided $-\infty < x < \infty.$

(d)
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots,$$

provided $-\infty < x < \infty.$

(e)
$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots,$$

provided $-1 < x < 1.$

Taylor Polynomials

18. Let f(x) be a function. The n^{th} degree **Taylor Polynomial** for f(x) at x = a is

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$$

where $f^{(i)}(a)$ is the *i*th derivative of f(x) at x = a.

19. **Taylor's Inequality:** An upper bound on the absolute value of the remainder is

$$|R_n(x)| \le \frac{M}{(n+1)!}|x-a|^{n+1}$$

where $|f^{(n+1)}(x)| \leq M$ for x in an interval containing a. Note: This formula will be provided on the exam.

Three dimensional Coordinate System

- 20. The distance from the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is $|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
- 21. The equation of the sphere with center (h, k, l) and radius r is $(x h)^2 + (y k)^2 + (z l)^2 = r^2$

Vectors and the Dot Product

- 22. The Algebra of Vectors: Suppose $\overrightarrow{a} = \langle a_1, a_2, a_3 \rangle$ and $\overrightarrow{b} = \langle b_1, b_2, b_3 \rangle$ are vectors and c is a scalar.
 - a.) Scalar Multiplication: $c \overrightarrow{a} = \langle ca_1, ca_2, ca_3 \rangle$.
 - b.) Vector Sum: $\overrightarrow{a+b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$.
 - c.) Vector Difference: $\overrightarrow{a-b} = \langle a_1 b_1, a_2 b_2, a_3 b_3 \rangle$.
 - d.) Vector Length: $|\vec{a}| = \sqrt{(a_1)^2 + (a_2)^2 + (a_3)^2}.$
 - e.) Unit Vector: A unit vector in the direction of $\overrightarrow{\alpha}$ is $\overrightarrow{u} = \frac{\overrightarrow{\alpha}}{|\overrightarrow{\alpha}|}$
 - f.) Dot Product: $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$, where θ is the angle between the vectors \overrightarrow{a} and \overrightarrow{b} .
- 23. Alternative Dot Product: If you know the components of \overrightarrow{a} and \overrightarrow{b} , then $\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2 + a_3b_3$.
- 24. The angle between the vectors \overrightarrow{a} and \overrightarrow{b} is

$$\theta = \arccos\left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}\right)$$

25. Vector and Scalar Projections

• The Vector Projection of \overrightarrow{b} onto \overrightarrow{a} , also called the projection of \overrightarrow{b} in the direction of \overrightarrow{a} , is:

$$\overrightarrow{proj_a b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|^2} \overrightarrow{a}$$

• The Scalar Projection of \overrightarrow{b} onto \overrightarrow{a} (also called the scalar component of \overrightarrow{b} onto \overrightarrow{a}) is:

$$comp_a b = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|}$$