## Spring 2013 Math 152

## Overview of Material for Test III courtesy: Amy Austin

## Integral Test, Comparison Tests

1. Integral Test: If $f(x)$ is a positive, continuous, decreasing function on $[k, \infty]$, where $k$ is a non-negative integer, and $a_{n}=f(n)$. Then $\sum_{n=k}^{\infty} a_{n}$ and $\int_{k}^{\infty} f(x) d x$ either both converge or both diverge.
"If the improper integral converges, so does the series. If the improper integral diverges, so does the series".
TIP: Use the integral test if the terms of the series are positive, decreasing and integrable.
2. Comparison Test: Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{i=1}^{\infty} b_{n}$ are series of positive terms.

- If $\sum_{n=1}^{\infty} b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all $n$, then $\sum_{n=1}^{\infty} a_{n}$ is also convergent. "If the larger series converges, so does the smaller series".
- If $\sum_{n=1}^{\infty} b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all $n$, then $\sum_{n=1}^{\infty} a_{n}$ is also divergent. "If the smaller series diverges, so does the larger series".

TIP: Use the comparison test if the terms of the series are positive and are comparable to a p-series or geometric series.
3. Limit Comparison Test: If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0$, then either both series converge or both series diverge.
TIP: Use the limit comparison test if the terms of the series are positive and are comparable to a p-series or geometric series, however the inequality may not point in the right direction for the comparison test to be conclusive.
4. Remainder Estimate: Suppose $s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+$ $\ldots+a_{n}$ is the $n^{\text {th }}$ partial sum of the convergent series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}>0$. Then the remainder in using $s_{n}$ to approximate the sum $S$ is defined to be

$$
R_{n}=S-s_{n}=\sum_{i=n+1}^{\infty} a_{i}=a_{n+1}+a_{n+2}+\ldots
$$

Moreover, if $\sum_{n=1}^{\infty} a_{n}$ was shown to be convergent by the integral test or a comparison test (where $a_{n}=f(n)$ ), then

$$
R_{n}=\sum_{i=n+1}^{\infty} a_{i} \leq \int_{n}^{\infty} f(x) d x
$$

## Alternating series, Ratio Test and Remainders

5. The Alternating Series Test: The alternating series $\sum_{n=k}^{\infty}(-1)^{n} a_{n}$, where $a_{n}>0$, converges if it satisfies both conditions given below:

- $a_{n+1} \leq a_{n}$ (ie the sequence $\left\{a_{n}\right\}$ is decreasing).
- $\lim _{n \rightarrow \infty} a_{n}=0$

TIP: Use the alternating series test if the series is an alternating series which fails the test for divergence.
6. Def: A series is absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. If $\sum_{n=1}^{\infty} a_{n}$ converges, but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges, then the series is conditionally convergent. To test for absolute convergence, you either use the Ratio Test (see conditions below) or test $\sum_{n=1}^{\infty}\left|a_{n}\right|$ for convergence, which usually involves the p - series test, integral test or comparison test. Note: If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.

## 7. The Ratio Test:

- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, then the test fails (ie is inconclusive).
Tip: Use the ratio test if the series contains either or a factorial or an exponential (or both).

8. Remainder Estimate and The Alternating Series Theorem
If $\sum_{n=1}^{\infty}(-1)^{n} a_{n}, a_{n}>0$, is a convergent alternating series, and a partial sum
$s_{n}=\sum_{i=1}^{n}(-1)^{i} a_{i}$ is used to approximate the sum of the series with remainder $R_{n}$, then $\left|R_{n}\right| \leq a_{n+1}$.

## Power Series

9. Def: A Power Series is a series of the form
$\sum_{n=1}^{\infty} c_{n}(x-a)^{n}$, where $x$ is the variable and the $c_{n}$ 's are called the coefficients of the series. More generally, $\sum_{n=1}^{\infty} c_{n}(x-a)^{n}$ is called a power series centered at $x=a$, or a power series about $a$. Specifically, $\sum_{n=1}^{\infty} c_{n} x^{n}$ is a power series centered at zero.

Moreover, the set of all values of $x$ for which the series converges is called the interval of convergence, denoted by $I$. The radius of convergence is $R=\frac{1}{2}$ of the length of $I$. "The radius of convergence is the maximum distance you deviate from the center to have convergence".
10. Theorem: For a given power series $\sum_{n=1}^{\infty} c_{n}(x-a)^{n}$ there are only three possibilities:
(i) The series converges only for $x=a$, in which case $I=\{a\}$ and $R=0$.
(ii) The series converges for all $x$, in which case
$I=(-\infty, \infty)$ and $R=\infty$.
(iii) There is a positive number $R$ such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$, in which case $I=(a-R, a+R)$ (test the end points for convergence) and the radius of convergence is $R$. In order to find the radius of convergence, apply the ratio test.

## Representing Functions as Power Series

11. If $|x|<1$, then $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$.
12. Theorem: If $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ has a radius of convergence $R$, then
a.) $f^{\prime}(x)=\sum_{n=1}^{\infty} c_{n} n x^{n-1}$ and has a radius of convergence $R$.
b.) $\int f(x) d x=C+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1} x^{n+1}$ and has a radius of convergence $R$.
13. To find a power series representation for a function of the form $\ln (a x+b)$, first take the derivative of the function, then integrate its power series representation.
14. To find a power series representation for a function of the form $\frac{1}{(1+x)^{2}}$, first integrate the function, then take the derivative of its power series representation.

## Taylor and Maclaurin Series

15. The Taylor Series of $f(x)$ at $x=a$ is
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$
$=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots$
16. The Maclaurin series is the Taylor series about 0 , that is
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$
$=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots$
17. Known Maclaurin series. Have these Maclaurin series memorized and know when to use them.
(a) $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4} \ldots$, provided $-1<x<1$.
(b) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$, provided $-\infty<x<\infty$.
(c) $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$, provided $-\infty<x<\infty$.
(d) $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$, provided $-\infty<x<\infty$.
(e) $\arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$, provided $-1<x<1$.

## Taylor Polynomials

18. Let $f(x)$ be a function. The $n^{\text {th }}$ degree Taylor Polynomial for $f(x)$ at $x=a$ is

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

where $f^{(i)}(a)$ is the $i^{\text {th }}$ derivative of $f(x)$ at $x=a$.
19. Taylor's Inequality: An upper bound on the absolute value of the remainder is

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

where $\left|f^{(n+1)}(x)\right| \leq M$ for $x$ in an interval containing $a$. Note: This formula will be provided on the exam.

## Three dimensional Coordinate System

20. The distance from the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is
$|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
21. The equation of the sphere with center $(h, k, l)$ and radius $r$ is $(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}$

## Vectors and the Dot Product

22. The Algebra of Vectors: Suppose $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ are vectors and $c$ is a scalar.
a.) Scalar Multiplication: $c \vec{a}=\left\langle c a_{1}, c a_{2}, c a_{3}\right\rangle$.
b.) Vector Sum: $\overrightarrow{a+b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle$.
c.) Vector Difference: $\overrightarrow{a-b}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle$.
d.) Vector Length: $|\vec{a}|=\sqrt{\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\left(a_{3}\right)^{2}}$.
e.) Unit Vector: A unit vector in the direction of $\vec{a}$ is $\vec{u}=\frac{\vec{a}}{|\vec{a}|}$
f.) Dot Product: $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$, where $\theta$ is the angle between the vectors $\vec{a}$ and $\vec{b}$.
23. Alternative Dot Product: If you know the components of $\vec{a}$ and $\vec{b}$, then $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.
24. The angle between the vectors $\vec{a}$ and $\vec{b}$ is $\theta=\arccos \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)$
25. Vector and Scalar Projections

- The Vector Projection of $\vec{b}$ onto $\vec{a}$, also called the projection of $\vec{b}$ in the direction of $\vec{a}$, is:
$\overrightarrow{\operatorname{proj}_{a} \vec{b}}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}$
- The Scalar Projection of $\vec{b}$ onto $\vec{a}$ (also called the scalar component of $\vec{b}$ onto $\vec{a}$ ) is:
$\operatorname{comp}_{a} b=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

