Spring 2013 Math 152

courtesy: Amy Austin
(covering sections 6.5-8.2)

Section 6.5

1. $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
2. $\int x \sin \left(x^{2}-2\right) d x$
3. $\int_{0}^{1} \frac{6 x+1}{x^{2}+1} d x$
4. $\int \frac{x}{(x+1)^{3}} d x$

Section 7.1

5. Find the area of the region bounded by the following pairs of curves.
a.) $y=x+2, y=x^{2}$
b.) $x+y^{2}=2, x+y=0$
c.) $y=\cos x, y=\sin x, x=0, x=\pi$

Section 7.2 and 7.3

6. Find the volume of the solid obtained by rotating the region bounded by $y=x$ and $y=x^{3}$ (first quadrant only) about the x-axis.
7. Find the volume of the solid obtained by rotating the region in the first quadrant bounded by $y=x^{2}, \quad y=4, \quad$ and $\quad x=0 \quad$ about the y axis by first using the method of shells, then the method of disks.
8. Let R be the region bounded by $y=\sin x, x=0$, $x=\frac{\pi}{2}$ and $y=0$. Using the method of washers, set up the integral that gives the volume of the solid obtained by rotating R about the line $y=1$, Do not evaluate the integral.
9. Let R be the region bounded by $y=\sin x, x=0$, $x=\frac{\pi}{2}$ and $y=0$. Using the method of cylindrical shells, set up the integral that gives the volume of the solid obtained by rotating R about the line $x=\frac{\pi}{2}$. Do not evaluate the integral.
10. Find the volume of the solid whose base is the region bounded by the line $y=2 x-1, x=0$
and $y=0$. Cross sections perpendicular to the y axis are squares.

Section 7.4

11. The force required to stretch a spring from a natural length of 1 foot to a length of 1.5 feet is 25 pounds. How much work in foot pounds is done in stretching the spring from 1.25 to 1.5 feet?
12. A tank contains water and has the shape described below. Find the work required to pump all of the water out of the tank. Assume that $\rho=1000$ is the density of water (in $\mathrm{kg} / \mathrm{m}^{3}$) and $g=9.8$ is the acceleration due to gravity (in m / s^{2}).
a.) The tank is a trough 8 m long. The end of the trough is a semi circle with radius 3 m , diameter at the top.
b.) The tank has the shape of an upright circular cone with height 5 m and radius 2 m . In addition, there is a 1 meter high spout at the top of the cone from which the water exits the tank. If the tank is initially full to a water depth of 3 m , find the work required to pump all of the water out of the spout.
13. A cable that weighs $2 \mathrm{lb} / \mathrm{ft}$ is used to lift 800 lb of coal up a mineshaft 500 feet deep. Find the work done.

Section 7.5

14. Find the average value of $f(x)=x \sqrt{x+2}$ over the interval $[-1,2]$.

Section 8.1

15. $\int \sqrt{x} \ln x d x$
16. $\int_{0}^{1} \frac{x}{e^{3 x}} d x$
17. $\int x^{2} \cos (2 x) d x$
18. $\int_{0}^{1 / 2} \arcsin x d x$
19. $\int e^{2 x} \cos x d x$

Section 8.2

20. $\int \sin ^{2} x \cos ^{3} x d x$
21. $\int \sin ^{3} x \cos ^{3} x d x$
22. $\int \cos ^{2}(4 x) \sin ^{2}(4 x) d x$
23. $\int \tan ^{5} x \sec ^{3} x d x$
24. $\int_{0}^{1} \sec ^{4} x \sqrt{\tan x} d x$
25. $\int \frac{\sin ^{2}(\ln x)}{x} d x$
26. Let R be the region bounded by $y=\cos x$, $y=0, x=0, x=\frac{\pi}{4}$. Find the volume obtained by rotating the region R about the x-axis, then the y-axis.
