Spring 2013 Math 152

Week in Review 2 courtesy: Amy Austin (covering section 7.1-7.2)

Section 7.1

- 1. Find the area bounded by $y = \cos x$, y = 0, x = 0, $x = \frac{\pi}{3}$.
- 2. Find the area bounded by $y = \sin x$, y = 0, $x = \frac{\pi}{4}$, $x = \frac{3\pi}{2}$.
- 3. Find the area bounded by $y = x^2$ and $y = 2x x^2$.
- 4. Find the area bounded by y = x 1 and $y^2 = 2x + 6$.
- 5. Find the area bounded by $y = x^2 + 1$, $y = 3 x^2$, x = -1, x = 2.
- 6. Find the area of the region bounded by the parabola $y = 2x^2$, the tangent line to this parabola at (3, 18) and the x-axis.

Section 7.2

- 7. Find the volume of the solid obtained by revolving the region bounded by $y = e^x$, y = 0, x = 0, x = 1about the x-axis.
- 8. Find the volume of the solid obtained by revolving the region bounded by $y = 3x^2$, y = 12, x = 0 about the *y*-axis.
- 9. Find the volume of the solid obtained by revolving the region bounded by $y = x^2$, y = 4x, about the *x*-axis, then the *y* axis.
- 10. Find the volume of the solid obtained by revolving the region bounded by $y = x^2$, y = 4, about the line y = 4.
- 11. Find the volume of the solid obtained by revolving the region bounded by $x = y^2$, x = 1, about the line x = 1.
- 12. Find the volume of the solid obtained by revolving the region bounded by y = x, $y = \sqrt{x}$, about the line x = -1.
- 13. Find the volume of the solid S described here: The base of S is the region bounded by $y = x^2$ and y = 4. Cross-sections perpendicular to the y axis are equilateral triangles.

- 14. Find the volume of the solid S described here: The base of S is the triangular region with vertices (0, 0), (3, 0) and (0, 2). Cross-sections perpendicular to the x axis are semi-circles.
- 15. Find the volume of the solid S described here: The base of S is the ellipse $\frac{x^2}{4} + \frac{y^2}{16} = 1$. Cross sections perpendicular to the y-axis are squares.