Spring 2013 Math 152

Week in Review 2

courtesy: Amy Austin
(covering section 7.1-7.2)

Section 7.1

1. Find the area bounded by $y=\cos x, y=0, x=0$, $x=\frac{\pi}{3}$.
2. Find the area bounded by $y=\sin x, y=0, x=\frac{\pi}{4}$, $x=\frac{3 \pi}{2}$.
3. Find the area bounded by $y=x^{2}$ and $y=2 x-x^{2}$.
4. Find the area bounded by $y=x-1$ and $y^{2}=2 x+6$.
5. Find the area bounded by $y=x^{2}+1, y=3-x^{2}$, $x=-1, x=2$.
6. Find the area of the region bounded by the parabola $y=2 x^{2}$, the tangent line to this parabola at $(3,18)$ and the x-axis.

Section 7.2

7. Find the volume of the solid obtained by revolving the region bounded by $y=e^{x}, y=0, x=0, x=1$ about the x-axis.
8. Find the volume of the solid obtained by revolving the region bounded by $y=3 x^{2}, y=12, x=0$ about the y-axis.
9. Find the volume of the solid obtained by revolving the region bounded by $y=x^{2}, y=4 x$, about the x-axis, then the y axis.
10. Find the volume of the solid obtained by revolving the region bounded by $y=x^{2}, y=4$, about the line $y=4$.
11. Find the volume of the solid obtained by revolving the region bounded by $x=y^{2}, x=1$, about the line $x=1$.
12. Find the volume of the solid obtained by revolving the region bounded by $y=x, y=\sqrt{x}$, about the line $x=-1$.
13. Find the volume of the solid S described here: The base of S is the region bounded by $y=x^{2}$ and $y=4$. Cross-sections perpendicular to the y axis are equilateral triangles.
14. Find the volume of the solid S described here: The base of S is the triangular region with vertices $(0,0)$, $(3,0)$ and $(0,2)$. Cross-sections perpendicular to the x axis are semi-circles.
15. Find the volume of the solid S_{2} described here: The base of S is the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$. Cross sections perpendicular to the y-axis are squares.
