Section 7.3

1. First, let’s recap the disk and washer method:
 a.) Find the integral that gives the volume of the solid obtained by rotating the region bounded by \(y = x^3, y = 0, x = 0 \) and \(x = 2 \) about the \(x \) axis. Do not integrate.
 b.) Find the integral that gives the volume of the solid obtained by rotating the region bounded by \(y = x^3, y = 0, x = 0 \) and \(x = 2 \) about the \(y \) axis. Do not integrate.
 c.) Find the integral that gives the volume of the solid obtained by rotating the region bounded by \(y = x^2 \) and \(x = y^2 \) about the line \(x = 2 \). Do not integrate.
 d.) Find the integral that gives the volume of the solid obtained by rotating the region bounded by \(y = x^2 + 1, y = 5 \) about the line \(y = 5 \). Do not integrate.

2. Find the volume of the solid obtained by rotating the region bounded by the given curve(s) about the specified axis.
 a.) \(y = 10x - x^2, y = 0 \) about the \(y \) axis.
 b.) \(y = x^2, y = 3x \), about the \(y \) axis.
 c.) \(y = x^3, y = 0, x = 1, x = 2 \), about the line \(x = -1 \).
 d.) \(y = \sqrt{x}, x = 0, x = 4, y = 0 \), about the line \(y = 3 \).
 e.) \(y = x^2 \) and \(y = 4 - x^2 \), about the line \(x = \sqrt{2} \).

Section 7.4

3. How much work is done in lifting a 30 lb barbell from the floor to a height of 4 feet?

4. When a particle is at a distance \(x \) meters from the origin, a force of \(f(x) = 3x^2 + 2 \) Newtons acts on it. How much work is done in moving the object from \(x = 2 \) to \(x = 4 \)?

5. A spring has a natural length of 6 inches. If a 5-lb force is required to maintain it to a length of 18 inches, how much work is required to stretch it from 1 foot to 3 feet?

6. Suppose 2 N of work is needed to stretch a spring 1 meter beyond its natural length. How much work is done in stretching this spring 3.5 m beyond its natural length?

7. A heavy rope, 50 feet long, weighs 0.5 pounds per foot and hangs over the edge of a building 120 feet high. How much work is done in pulling the rope to the top of the building?

8. A 200 pound cable is 300 feet long and hangs vertically from the top of a tall building. How much work is required to pull 20 feet of the cable to the top of the building?

9. An aquarium 10 m long, 2 m wide and 1 m deep is full of water. Find the work required to pump half the water to the top of the aquarium.

10. A tank contains water and has the shape of a trough 6 feet long. The end of the trough is an isosceles triangle with height 3 feet and base length 4 feet. The vertex of the triangle is at the bottom. Find the work required to pump all of the water to the top of the tank.

11. A tank in the shape of sphere with radius 4 m is half full of water. The water is pumped from a spout at the top of the tank that is 1 m high. Find the work done in pumping the water through the spout.

12. A tank in the shape of cone with radius 1 inch and height 15 inches is full of water to a depth of 7 inches. Find the work done in pumping the water to the top of the tank.