Spring 2013 Math 152

Week in Review 3
courtesy: Amy Austin
(covering section 7.3-7.4)

Section 7.3

1. First, let's recap the disk and washer method:
a.) Find the integral that gives the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=0, x=0$ and $x=2$ about the x axis. Do not integrate.
b.) Find the integral that gives the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=0, x=0$ and $x=2$ about the y axis. Do not integrate.
c.) Find the integral that gives the volume of the solid obtained by rotating the region bounded by $y=x^{2}$ and $x=y^{2}$ about the line $x=2$. Do not integrate.
d.) Find the integral that gives the volume of the solid obtained by rotating the region bounded by $y=x^{2}+1, y=5$ about the line $y=5$. Do not integrate.
2. Find the volume of the solid obtained by rotating the region bounded by the given curve(s) about the specified axis.
a.) $y=10 x-x^{2}, y=0$ about the y axis.
b.) $y=x^{2}, y=3 x$, about the y axis.
c.) $y=x^{3}, y=0, x=1, x=2$, about the line $x=-1$.
d.) $y=\sqrt{x}, x=0, x=4, y=0$, about the line $y=3$.
e.) $y=x^{2}$ and $y=4-x^{2}$, about the line $x=\sqrt{2}$.

Section 7.4

3. How much work is done in lifting a 30 lb barbell from the floor to a height of 4 feet?
4. When a particle is at a distance x meters from the origin, a force of $f(x)=3 x^{2}+2$ Newtons acts on it. How much work is done in moving the object from $x=2$ to $x=4$?
5. A spring has a natural length of 6 inches. If a 5 lb force is required to maintain it to a length of 18 inches, how much work is required to stretch it from 1 foot to 3 feet?
6. Suppose 2 N of work is needed to stretch a spring 1 meter beyond its natural length. How much work is done in stretching this spring 3.5 m beyond its natural length?
7. A heavy rope, 50 feet long, weighs 0.5 pounds per foot and hangs over the edge of a building 120 feet high. How much work is done in pulling the rope to the top of the building?
8. A 200 pound cable is 300 feet long and hangs vertically from the top of a tall building. How much work is required to pull 20 feet of the cable to the top of the building?
9. An aquarium 10 m long, 2 m wide and 1 m deep is full of water. Find the work required to pump half the water to the top of the aquarium.
10. A tank contains water and has the shape of a trough 6 feet long. The end of the trough is an isosceles triangle with height 3 feet and base length 4 feet. The vertex of the triangle is at the bottom. Find the work required to pump all of the water to the top of the tank.
11. A tank in the shape of sphere with radius 4 m is half full of water. The water is pumped from a spout at the top of the tank that is 1 m high. Find the work done in pumping the water through the spout.
12. A tank in the shape of cone with radius 1 inch and height 15 inches is full of water to a depth of 7 inches. Find the work done in pumping the water to the top of the tank.
