## Spring 2013 Math 152

## Week in Review 7

courtesy: Amy Austin
(covering section 10.5-10.6)

## Section 10.5

1. For the following power series, find the radius and interval of convergence.
a.) $\sum_{n=0}^{\infty} \frac{n^{2} x^{n}}{3^{n}}$
b.) $\sum_{n=1}^{\infty} \frac{2^{n}(x-1)^{n}}{n^{2}+2}$
c.) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 x+1)^{n}}{\sqrt{n}}$
d.) $\sum_{n=0}^{\infty} \frac{n!(x+2)^{n-1}}{5^{n-1}}$
e.) $\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{(2 n+1)!}$
2. Suppose it is known that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=6$. On what interval(s) are we guaranteed convergence? On what interval(s) are we guaranteed divergence?
3. Suppose it is known that $\sum_{n=0}^{\infty} c_{n}(x-2)^{n}$ converges when $x=5$ and diverges when $x=12$. On what interval(s) are we guaranteed convergence? On what interval(s) are we guaranteed divergence?

## Section 10.6

4. Express the following functions as a power series. Identify the radius and interval of convergence.
a.) $f(x)=\frac{1}{1-x}$
b.) $f(x)=\frac{1}{1-5 x}$
c.) $f(x)=\frac{-3}{1+4 x^{2}}$
d.) $f(x)=\frac{3 x^{2}}{9-x}$
e.) $f(x)=\ln (x+4)$
f.) $f(x)=x \ln (x+4)$
g.) $f(x)=\arctan \left(2 x^{3}\right)$
h.) $f(x)=\frac{1}{(1-2 x)^{2}}$
5. Express $\int_{0}^{0.1} \frac{1}{1+x^{5}} d x$ as an infinite series. Use the sum of the first 3 terms of this series to approximate $\int_{0}^{0.1} \frac{1}{1+x^{5}} d x$. Estimate the error.
