Fall 2011 Math 151

Night Before Drill
courtesy: Amy Austin

Review Exercises: Sections 4.3 - 6.1

Section 4.3
1. Evaluate \(\log_3 108 - \log_3 4 \)
2. Solve for \(x \): \(\log(x + 3) + \log(x) = 1 \)
3. Solve for \(x \): \(\ln(x - \ln(x + 1)) = \ln 2 + \ln 3 \)
4. Find \(\lim_{x \to \infty} [\log(2x - 1) - \log(3x^2 + 6)] \)
5. What is the domain of \(f(x) = \ln(4 - x^2) \)?

Section 4.4
6. Find \(f'(x) \) for \(f(x) = \ln(2x^2 - 8) \)
7. Find the derivative of \(f(x) = 2^{\cos x} + \log(3x - 1) \)
8. Find \(y' \) for \(y = (\cos x)^\tan x \)
9. Find \(f''(e) \) for \(f(x) = \ln(\ln x) \)

Section 4.5
10. At a certain instant, 100 grams of a radioactive substance is present. After 4 years, 20 grams remain.
 a.) What is the half life of the substance?
 b.) How much of the substance remains after 2.5 years?
11. A bowl of soup at temperature 180° is placed in a 70° room. If the temperature of the soup is 150° after 2 minutes, when will the soup be an eatable 100°?

Section 4.6
12. Using implicit differentiation, show that \(\frac{d}{dx}(\arctan x) = \frac{1}{1 + x^2} \).
13. Find the derivative of \(y = x^2 \cos^{-1}(e^{3x}) \)
14. Find the equation of the line tangent to \(y = \tan^{-1}(2x - 1) \) when \(x = 1 \).
15. Compute the exact value of \(\lim_{x \to \infty} \arccos \left(\frac{1 + 2x}{5 - 4x} \right) \)
16. Compute \(\sec(\arctan(-\sqrt{3})) \)
17. Compute \(\sin^{-1}(\sin \frac{4\pi}{3}) \)
18. Find the domain of \(\arcsin(1 - 8x^3) \) Where does \(\arcsin(1 - 8x^3) \) cross the \(x \) axis.

Section 4.8
19. Find the limits of each of the following:
 a) \(\lim_{x \to 0} \frac{\arcsin(3x)}{2x} \)
 b) \(\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^{4x} \)
 c) \(\lim_{x \to \infty} \frac{(\ln x)^2}{4x} \)

Section 5.1 - 5.3
20. If \(f(x) = \frac{1}{x} \), verify \(f(x) \) satisfies the Mean Value Theorem on the interval \([1, 10]\) and find all \(c \) that satisfies the conclusion of the Mean Value Theorem.
21. Find the absolute maximum and minimum of the given function on the given interval.
 a) \(x^3 - 5x^2 + 3 \) on \([-1, 3]\)
 b) \(x \ln x \) on \([e^{-2}, 1]\)
22. Find the intervals where the given function is increasing and decreasing, local extrema, intervals of concavity and inflection points.
 a) \(f(x) = x^3 - 2x^2 + x \)
 b) \(f(x) = x^2 e^{2x} \)
23. Find the value of \(B \) that makes \(x = 3 \) an inflection point for \(y = x^3 + Bx^2 + 4 \).
24. In the graph that follows, the graph of \(f' \) is given. Using the graph of \(f' \), determine all critical values of \(f \), where \(f \) is increasing and decreasing, local extrema of \(f \), where \(f \) is concave up and concave down, and the \(x \)-coordinates of the inflection points of \(f \). Assume \(f \) is continuous.

![Graph of f']

Section 5.5

25. A cardboard rectangular box holding 32 cubic inches with a square base and open top is to be constructed. If the material for the base costs $2 per square inch and material for the sides costs $5 per square inch, find the dimensions of the cheapest such box.

26. Find the shortest distance from the point \((1, 4)\) to the parabola \(y^2 = 2x \).

27. The surface area of a closed cylindrical can is 2 square feet. Find the dimensions of the can that maximize the volume of the can.

Section 5.7

28. Find an antiderivative of \(\frac{1}{\sqrt{1-x^2}} - \frac{1+x}{x} \).

29. Given \(f''(x) = 2e^x - 4\sin(x) \), \(f(0) = 1 \), and \(f'(0) = 2 \), find \(f(x) \).

Section 6.1

30. A stone is dropped from a 450 meter tall building.

a.) Find a formula for the height of the stone at time \(t \). Carefully derive the formula you obtain, do not just quote physics formulas. Assume the acceleration due to gravity is \(-9.8 \text{ meters per second squared}\).

b.) With what velocity does the stone hit the ground?

31. Find the vector functions that describe the velocity and position of a particle that has an acceleration of \(\mathbf{a}(t) = (0, 2) \), initial velocity of \(\mathbf{v}(0) = (1, -1) \) and an initial position of \(\mathbf{r}(0) = (0, 0) \).

32. Expand and find the sum: \(\sum_{i=2}^{5} i^2 \)

33. Write \(1 + \frac{1}{e} + \frac{1}{e^2} + \frac{1}{e^3} + \frac{1}{e^4} + \frac{1}{e^5} \) in summation notation.

34. Find the sum: \(\sum_{i=2}^{500} (4) \)