Section 4.6: Inverse Trigonometric Functions

I. INVERSE COSINE: If $0 \leq x \leq \pi$, then $f(x)=\cos x$ is one-to-one, thus the inverse exists, denoted by $\cos ^{-1}(x)$ or $\arccos x$. Additionally, the domain of $\arccos x=$ range of $\cos x=[-1,1]$ and range of $\arccos x=$ domain of $\cos x=[0, \pi]$. Note: $\arccos (x)$ is the angle in $[0, \pi]$ whose cosine is x.

$$
\arccos (r)=
$$

Cancellation Equations: Recall $f^{-1}(f(x))=x$ for x in the domain of f, and $f\left(f^{-1}(x)\right)=x$ for x in the domain of f^{-1}. This yields the following cancellation equations:

- $\arccos (\cos x)=x$ if $0 \leq x \leq \pi$
- $\cos (\arccos x)=x$ if $-1 \leq x \leq 1$.

Example 1: Compute the following.
(i) $\arccos (0)=\theta$
(ii) $\cos ^{-1}(1)=\theta$
$\cos \theta=0, \quad 0 \leqslant \theta \leq \pi$

$$
\theta=\frac{\pi}{2}
$$

$$
\cos \theta=1 \quad 0 \leq \theta \leq \pi
$$

$$
\theta=0
$$

(iii) $\arccos (-1)=\Theta$
(iv) $\arccos \frac{1}{2}=\theta$

$$
\begin{aligned}
\cos \theta & =\frac{1}{2} \\
\theta & =\frac{\pi}{3}
\end{aligned}
$$

(v) $\cos ^{-1} \frac{-\sqrt{3}}{2}=\Theta$

$$
\theta=\pi-\frac{\pi}{6}
$$

$$
\cos \theta=-\frac{4}{5}=\frac{a d j}{h y p}
$$

$$
\theta=\frac{5 \pi}{6}
$$

$$
\begin{aligned}
& f^{-1}(f(x))=x \\
& f\left(f^{-1}(x)\right)=x
\end{aligned}
$$

(vii) $\arccos \left(\left(\cos \left(\frac{\pi}{6}\right)\right)\right.$

$$
\theta=\frac{\pi}{6}
$$

(ix) $\arccos \left(\left(\cos \left(-\frac{\pi}{3}\right)\right)=\frac{\pi}{3}\right.$
(vi) $\sin \left(2 \operatorname{\theta arccos}\left(-\frac{4}{5}\right)\right)=\sin (2 \theta)=2 \sin \theta \cos \theta$

$$
\theta=\arccos \left(-\frac{4}{5}\right)
$$

$$
\begin{aligned}
\sin (2 \theta) & =2 \sin \theta \cos \theta \\
& =2\left(\frac{3}{5}\right)\left(-\frac{4}{5}\right)
\end{aligned}
$$

(vii) $\arccos \left(\left(\cos \left(\frac{7 \pi}{6}\right)\right)=\frac{5 \pi}{6} \xrightarrow{\frac{n \pi}{6}}\right.$

$$
\arccos \left(\cos \frac{\pi}{6}\right)=\arccos \left(\frac{\sqrt{3}}{2}\right)
$$

$$
\theta=\frac{\pi}{6}
$$

$$
\begin{aligned}
\arccos \left(-\frac{\sqrt{3}}{2}\right) & =\theta \\
\cos \theta & =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

$(\mathrm{x}) \cos ((\underbrace{\cos ^{-1}(2)})$

$$
\theta=\frac{5 \pi}{6}
$$

done because domain $\arccos x$

$$
\begin{aligned}
& =\operatorname{carae} \cos x \\
& =[-1,1]
\end{aligned}
$$

II. INVERSE SINE: If $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$, then $f(x)=\sin x$ is one-to-one, thus the inverse exists, denoted by $\sin ^{-1}(x)$ or arcsin x. Additionally, the domain of $\arcsin x=$ range of $\sin x=[-1,1]$ and range of $\arcsin x=$ domain of $\sin x=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Note: $\arcsin (x)$ is the angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x.

$$
\arcsin (r)=\theta
$$

$$
\text { if } \quad \sin \theta=r
$$

$$
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

Cancellation Equations: Recall $f^{-1}(f(x))=x$ for x in the domain of f, and $f\left(f^{-1}(x)\right)=x$ for x in the domain of f^{-1}. This yields the following cancellation equations:

- $\arcsin (\sin x)=x$ if $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
- $\sin (\arcsin x)=x$ if $-1 \leq x \leq 1$.

Example 3: Compute the following.
(i) $\arcsin (0)=\theta$

$$
\begin{aligned}
\sin \theta & =0, \quad \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
\theta & =0
\end{aligned}
$$

(ii) $\sin ^{-1}(1)=\theta$

$$
\begin{aligned}
& \sin \theta=1, \quad-\frac{\pi}{2} \leqslant \theta<\frac{\pi}{2} \\
& \theta=\frac{\pi}{2}
\end{aligned}
$$

(iii) $\arcsin (-1)=\Theta$
(iv) $\arcsin \frac{1}{2}=\theta$

$$
\begin{aligned}
\sin \theta & =-1 \\
\theta & =-\frac{\pi}{2}
\end{aligned}
$$

$$
\sin \theta=\frac{1}{2}
$$

$$
\theta=\frac{\pi}{6}
$$

(v) $\sin ^{-1} \frac{-\sqrt{3}}{2}=\Theta$

$$
\text { (vi) } \tan ^{*}(\underbrace{\arcsin \left(\frac{2}{3}\right.}))
$$

$\sin \theta=-\frac{\sqrt{3}}{2}$

$$
\theta=\arcsin \frac{2}{3}
$$

$$
\theta=\frac{-\pi}{3}
$$

$$
\sin \theta=\frac{2}{3}
$$

$$
\tan \theta=\frac{2}{\sqrt{5}}
$$

(vii) $\sin \left(\arcsin \left(\frac{3}{10}\right)\right)$
(viii) $\arcsin \left(\left(\sin \left(\frac{5 \pi}{4}\right)\right)\right.$
(ix) $\arcsin \left(\left(\sin \left(-\frac{\pi}{6}\right)\right)\right.$
(x) $\arcsin \left(\sin \frac{\pi}{120}\right)$
III. INVERSE TANGENT: If $-\frac{\pi}{2}<x<\frac{\pi}{2}$, then $f(x)=\tan x$ is one-toone, thus the inverse exists, denoted by $\tan ^{-1}(x)$ or $\arctan x$. Additionally, the domain of $\arctan x=$ range of $\tan x=(-\infty, \infty)$ and range of $\arctan x=$ domain of $\tan x=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Note: $\arctan (x)$ is the angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is x.

Cancellation Equations: Recall $f^{-1}(f(x))=x$ for x in the domain of f, and $f\left(f^{-1}(x)\right)=x$ for x in the domain of f^{-1}. This yields the following cancellation equations:

- $\arctan (\tan x)=x$ if $-\frac{\pi}{2}<x<\frac{\pi}{2}$
- $\tan (\arctan x)=x$ for all x.

Example 5: Compute the following.
(i) $\arctan (0)$
(ii) $\tan ^{-1}(1)$
(iii) $\arctan (-1)$
(iv) $\arctan (-\sqrt{3})$
(vii) $\lim _{x \rightarrow \infty} \arctan x$
(viii) $\lim _{x \rightarrow-\infty} \arctan x$

Derivatives of Inverse Trigonometric Functions:
A.) $\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}$.
B.) $\frac{d}{d x} \arccos x=-\frac{1}{\sqrt{1-x^{2}}}$.
C.) $\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}$.

Example 7: Prove formula A.

Example 8: Find the derivative of $f(x)=\arccos (2 x-1)$.

Example 9: Find the derivative of $f(x)=\tan ^{-1}(\arcsin x)$.

Example 10: What is the domain of $\arcsin (3 x+1)$? Of $\arctan (3 x+1)$?

The Unit Circle
Points of Special Interest on the Unit Circle: (Download this picture .pdf)

