Definition

(1) A function f has an absolute maximum at c if $f(c) \geq f(x)$ for all x in the domain of f. A function f has an absolute minimum at c if $f(c) \leq f(x)$ for all x in the domain of f. In this case, we call $f(c)$ the maximum value or minimum value, respectively.
(2) A function f has a local maximum at c if $f(c) \geq f(x)$ when x is near c. A function f has a local minimum at c if $f(c) \leq f(x)$ when x is near c.

EXAMPLE 1: Find all absolute and local extrema by graphing the function:
(a) $f(x)=1-x^{2},-3<x \leq 2$.

abs max: $y=1$
abs min: none
local max: $(0,1)$
local min: none
(b) $f(x)= \begin{cases}x^{2} & \text { if }-1 \leq x<0 \\ 2-x^{2} & \text { if } 0 \leq x \leq 1\end{cases}$

$$
\begin{aligned}
& \text { abs } \max \\
& \text { abs } \min \\
& \text { none } \\
& \text { local } \max \\
& \text { local min } \\
& \text { lon }
\end{aligned}
$$

Definition We call $x=c$ a critical number of $f(x)$ if $x=c$ is in the domain of f and either $\frac{f^{\prime}(c)=0}{\downarrow}$ or $\underbrace{f^{\prime}(c) \text { does not exist. }}$

EXAMPLE 2: Find the domain and critical values for the following functions:
(a) $f(x)=4 x^{3}-9 x^{2}-12 x+3$ doman \mathbb{R}

$$
\begin{aligned}
f(x)= & 4 x^{3}-9 x^{2}-12 x+3 \\
f^{\prime}(x) & =12 x^{2}-18 x-12 \\
& =6\left(2 x^{2}-3 x-2\right)
\end{aligned} \quad \mapsto 6(2 x+1)(x-2)=0
$$

(b) $f(x)=\left|x^{2}-1\right|$ domain: \mathbb{R}

con: $x=0$ because $f^{\prime}(0)=0$ con: $x= \pm 1$ because $f^{\prime}(\pm 1)$ dne
(c) $f(x)=\sqrt[3]{x^{2}-3 x}$ domain: \mathbb{R}

$$
\begin{array}{ll}
\text { (c) } f(x)=\sqrt[3]{x^{2}-3 x} & \text { domain: } \mathbb{R} \\
f(x)=\left(x^{2}-3 x\right)^{\frac{1}{3}} & f^{\prime}(x)=\frac{1}{3}\left(x^{2}-3 x\right)^{-\frac{2}{3}}(2 x-3)
\end{array}
$$

$$
f^{\prime}(x)=\frac{2 x-3}{3(\underbrace{x^{2}-3 x}_{x(x-3)})^{2 / 3}}
$$

cf: $f^{\prime}(x)=0 \rightarrow 2 x-3=0$

$$
x=\frac{3}{2}
$$

(d) $f(x)=x e^{2 x} \quad$ domain \mathbb{R}
$c n: f^{\prime}(x) d n e$

$$
\begin{aligned}
& x=0 \\
& x=3
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =e^{2 x}+2 x e^{2 x} \\
& =\underline{e}^{2 x}\left(\frac{1+2 x)}{\begin{array}{c}
\text { never } \\
\text { zero }
\end{array} \quad \text { equals zero }} \text { when } x=-\frac{1}{2}\right.
\end{aligned}
$$

(e) $f(x)=x \ln x$ domain: $(0, \infty)$

$$
\begin{gathered}
f^{\prime}(x)=\ln x+x\left(\frac{1}{x}\right) \\
f^{\prime}(x)=\ln x+1 \\
\ln x+1=0
\end{gathered} \quad \begin{aligned}
& \ln x=-1 \\
& x=e^{-1} \\
&
\end{aligned}
$$

Extreme Value Theorem If $f(x)$ is a continuous function on a closed interval
$[a, b]$, then f will attain both an absolute maximum and an absolute minimum.

Graphical illustration:
endpoints

EXAMPLE 9: Use the extreme value theorom to find the absolute extrema for $f(x)=1+27 x-x^{3}$ on the interval $[0,4]$.

Step: Find $c n$ that lie in $[0,4] \quad f(3)=1+81-27$

$$
\begin{aligned}
& f^{\prime}(x)=27-3 x^{2} \\
& 273 \\
& =3\left(9-x^{2}\right) \\
& \text { cf: } x=3 \text { only } \\
& \text { since } x=-3 \text { not in interval. } \\
& f(3)=\frac{82}{55} \\
& f(0)=1 \\
& f(4)=1+108-64 \\
& =109-64 \\
& =45
\end{aligned}
$$

EXAMPLE 4: Use the extreme value theorom to find the absolute extrema for $f(x)=x-2 \cos x$ on the interval $[0, \pi]$. abs $\min =1$

$$
\begin{aligned}
& f^{\prime}(x)=1+2 \sin x \\
& f^{\prime}(x)=0 \quad 1+2 \sin x=0 \\
& f(0)=-2 \leftarrow \text { abs min } \sin \\
& f(\pi)=\pi+2 \leftarrow \text { abs } \max
\end{aligned}
$$

