Section 11.11 Taylor Polynomials

Definition: Let $f(x)$ be a function. Recall the Taylor Series for $f(x)$ at $x=a$ is
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$. A partial sum of a Taylor Series is called a Taylor Polynomial. More specifically, the $n^{\text {th }}$ degree Taylor Polynomial for $f(x)$ at $x=a$ is

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

where $f^{(i)}(a)$ is the i th derivative of $f(x)$ at $x=a$.

The Taylor polynomial at $x=a$ is useful in approximating a function near $x=a$. The first degree Taylor polynomial at $x=a$ is the same as the tangent line to $f(x)$ at $x=a$, and the second degree Taylor polynomial at $x=a$ is the same as the quadratic approximation to $f(x)$ at $x=a$. The higher the degree, the better approximation.

1. Find both the first and second degree Taylor polynomial for $f(x)=\sqrt{x}$ at $x=4$.

2. Find the third degree Taylor Polynomial for $f(x)=x e^{x}$ at $x=2$.
3. Find $T_{8}(x)$ for $f(x)=x^{2} e^{-2 x^{3}}$ at $x=0$.
