MATH 152 SPRING 2019

Sample Exam (covering sections 5.5-7.2) 1. Find the area of the region bounded by $y = x^3$, y = x from x = 0 to x = 2.

- a) $\frac{3}{2}$ b) 2 b) 1
 - c) $\frac{1}{2}$
 - d) $\frac{5}{2}$
 - e) 3

2. If we revolve the region bounded by $x = 2y^2$ and x = 2 about the line x = 2, which of the following integrals gives the resulting volume?

a)
$$\int_{-1}^{1} \pi (4 - 4y^{4}) dy$$

b)
$$\int_{-1}^{1} \pi (4 - (2 - 2y^{2})^{2}) dy$$

c)
$$\int_{-1}^{1} 4\pi y^{4} dy$$

d)
$$\int_{-1}^{1} \pi (2 - 2y^{2})^{2} dy$$

e)
$$\int_{-1}^{1} \pi (4y^{4} - 4) dy$$

3. A spring has a natural length of 1 m. The force required to keep it stretched to a length of 2 m is 10 N. Find the work required to stretch the spring from a length of 2 m to a length of 4 m.

a) $\frac{75}{4}$ J b) 45 J c) $\frac{75}{2}$ J d) 30 J e) 40 J

4. Evaluate
$$\int_{0}^{\sqrt[3]{\pi/2}} x^{5} \cos(x^{3}) dx$$

a) $\frac{\pi}{6} - \frac{1}{3}$
b) $\frac{\pi}{3} - \frac{1}{6}$
c) $\frac{\pi}{2} - \frac{1}{3}$
d) $\frac{\pi}{3} - \frac{1}{2}$
e) $\frac{\pi}{6} - \frac{1}{2}$

5.
$$\int_{1}^{e^{4}} x \ln x \, dx =$$

a) $\frac{7e^{8} + 1}{4}$
b) $\frac{9e^{8} + 1}{4}$
c) $\frac{8e^{8} + 1}{4}$
d) $\frac{7e^{8} - 1}{4}$
e) $\frac{8e^{8} - 1}{4}$

6.
$$\int \sin^2(x) \, dx =$$

a) $\frac{x}{2} + \frac{1}{4} \sin(2x) + C$
b) $\frac{x}{2} - \frac{1}{4} \sin(2x) + C$
c) $\frac{4}{3} \sin^3(x) + C$
d) $\frac{x}{2} + 2\sin(2x) + C$
e) $\frac{1}{3} \sin^3(x) + C$

7. A 15 pound rope, 30 feet long, hangs from the top of a cliff. How much work is done in pulling $\frac{1}{3}$ of this rope to the top of the cliff?

- a) 125 foot-pounds
- b) 25 foot-pounds
- c) 35 foot-pounds
- d) 2255 foot-pounds
- e) 75 foot-pounds

8.
$$\int_{0}^{\pi/4} \sec^{4} x \tan^{2} dx$$

a) $\frac{16}{3}$
b) $\frac{4}{3}$
c) $\frac{8}{3}$
d) $\frac{1}{6}$
e) $\frac{8}{15}$ e

9.
$$\int \frac{x}{(x-1)^2} dx$$

a) $\ln |x-1| + \frac{1}{x-1} + C$
b) $\ln |x-1| - \frac{1}{x-1} + C$
c) $\ln |x-1| + \frac{1}{3(x-1)^2} + C$
d) $\ln |x-1| - \frac{1}{3(x-1)^2} + C$
e) $\ln |x-1| + \frac{3}{(x-1)^2} + C$

Part II - Work Out Problems

10. Find the volume of the solid obtained by revolving the region bounded by $y = 4 - x^2$ and y = 3 about the x-axis.

11. The base of a solid is the region bounded by $y = x^2$ and y = 1. Cross-sections perpendicular the the y-axis are semi-circles. Set up but do not evaluate an integral that gives the volume of the solid.

12. A 15 m long trough with semicircular ends of radius 2 m is full of water. Set up but **do not evaluate** an integral that will compute the work required to pump all of the water out of a 1 m high spout. Indicate on the picture where you are placing the axis and which direction is positive. Note: The density of water is $\rho = 1000 \ kg/m^3$ and the acceleration due to gravity is 9.8 m/s^2 .

13. Using cylindrical shells, set up but do not evaluate an integral that gives the volume of the solid formed by rotating the region bounded by $y = \sqrt{x}$ and $y = x^2$ about the line y = -1.

14. Consider the region R bounded by $y = \sqrt{x} + 3, y = 3, x = 16$

a.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the x-axis

b.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the y-axis

c.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the line x = -1

d.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the line y = 10.

15. Find $\int \sec^5 x \tan^3 x \, dx$.

16. Find $\int \sin^5(3x) \cos^2(3x) \, dx$.

17. Evaluate $\int \arccos x \, dx$.

17. Evaluate $\int e^x \cos(2x) dx$.