MATH 152
 SPRING 2019

Sample Exam (covering sections 5.5-7.2)

1. Find the area of the region bounded by $y=x^{3}, y=x$ from $x=0$ to $x=2$.
a) $\frac{3}{2}$
b) 2
c) $\frac{1}{2}$
d) $\frac{5}{2}$
e) 3
2. If we revolve the region bounded by $x=2 y^{2}$ and $x=2$ about the line $x=2$, which of the following integrals gives the resulting volume?
a) $\int_{-1}^{1} \pi\left(4-4 y^{4}\right) d y$
b) $\int_{-1}^{1} \pi\left(4-\left(2-2 y^{2}\right)^{2}\right) d y$
c) $\int_{-1}^{1} 4 \pi y^{4} d y$
d) $\int_{-1}^{1} \pi\left(2-2 y^{2}\right)^{2} d y$
e) $\int_{-1}^{1} \pi\left(4 y^{4}-4\right) d y$
3. A spring has a natural length of 1 m . The force required to keep it stretched to a length of 2 m is 10 N . Find the work required to stretch the spring from a length of 2 m to a length of 4 m .
a) $\frac{75}{4} \mathrm{~J}$
b) 45 J
c) $\frac{75}{2} \mathrm{~J}$
d) 30 J
e) 40 J
4. Evaluate $\int_{0}^{\sqrt[3]{\pi / 2}} x^{5} \cos \left(x^{3}\right) d x$
a) $\frac{\pi}{6}-\frac{1}{3}$
b) $\frac{\pi}{3}-\frac{1}{6}$
c) $\frac{\pi}{2}-\frac{1}{3}$
d) $\frac{\pi}{3}-\frac{1}{2}$
e) $\frac{\pi}{6}-\frac{1}{2}$
5. $\int_{1}^{e^{4}} x \ln x d x=$
a) $\frac{7 e^{8}+1}{4}$
b) $\frac{9 e^{8}+1}{4}$
c) $\frac{8 e^{8}+1}{4}$
d) $\frac{7 e^{8}-1}{4}$
e) $\frac{8 e^{8}-1}{4}$
6. $\int \sin ^{2}(x) d x=$
a) $\frac{x}{2}+\frac{1}{4} \sin (2 x)+C$
b) $\frac{x}{2}-\frac{1}{4} \sin (2 x)+C$
c) $\frac{4}{3} \sin ^{3}(x)+C$
d) $\frac{x}{2}+2 \sin (2 x)+C$
e) $\frac{1}{3} \sin ^{3}(x)+C$
7. A 15 pound rope, 30 feet long, hangs from the top of a cliff. How much work is done in pulling $\frac{1}{3}$ of this rope to the top of the cliff?
a) 125 foot-pounds
b) 25 foot-pounds
c) 35 foot-pounds
d) 2255 foot-pounds
e) 75 foot-pounds
8. $\int_{0}^{\pi / 4} \sec ^{4} x \tan ^{2} d x$
a) $\frac{16}{3}$
b) $\frac{4}{3}$
c) $\frac{8}{3}$
d) $\frac{1}{6}$
e) $\frac{8}{15} e$
9. $\int \frac{x}{(x-1)^{2}} d x$
a) $\ln |x-1|+\frac{1}{x-1}+C$
b) $\ln |x-1|-\frac{1}{x-1}+C$
c) $\ln |x-1|+\frac{1}{3(x-1)^{2}}+C$
d) $\ln |x-1|-\frac{1}{3(x-1)^{2}}+C$
e) $\ln |x-1|+\frac{3}{(x-1)^{2}}+C$

Part II - Work Out Problems

10. Find the volume of the solid obtained by revolving the region bounded by $y=4-x^{2}$ and $y=3$ about the x-axis.
11. The base of a solid is the region bounded by $y=x^{2}$ and $y=1$. Cross-sections perpendicular the the y-axis are semi-circles. Set up but do not evaluate an integral that gives the volume of the solid.
12. A 15 m long trough with semicircular ends of radius 2 m is full of water. Set up but do not evaluate an integral that will compute the work required to pump all of the water out of a 1 m high spout. Indicate on the picture where you are placing the axis and which direction is positive. Note: The density of water is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
13. Using cylindrical shells, set up but do not evaluate an integral that gives the volume of the solid formed by rotating the region bounded by $y=\sqrt{x}$ and $y=x^{2}$ about the line $y=-1$.
14. Consider the region R bounded by $y=\sqrt{x}+3, y=3, x=16$
a.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the x-axis
b.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the y-axis
c.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the line $x=-1$
d.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the line $y=10$.
15. Find $\int \sec ^{5} x \tan ^{3} x d x$.
16. Find $\int \sin ^{5}(3 x) \cos ^{2}(3 x) d x$.
17. Evaluate $\int \arccos x d x$.
18. Evaluate $\int e^{x} \cos (2 x) d x$.
