Section 10.1: Curves Defined by Parametric Equations

Parametric Curves: Suppose a particle is moving along the curve C as shown below. We call $x=f(t)$ and $y=g(t)$ parametric equations, where t is the parameter. As t varies over its domain, we get a collection of points $(x, y)=(f(t), g(t))$ which traces out the parametric curve.

Sketch the parametric curves described below. Indicate with an arrow the direction in which the curve is traced out as t increases.

1. $x=t-3, y=2 t-1$

2. $x=t+1, y=t^{2}-4$

3. $x=4-t, y=\sqrt{t}$

4. $x=2 \sin \theta, y=2 \cos \theta$

5. $x=3 \cos \theta, y=2 \sin \theta, 0 \leq \theta \leq \pi$

6. $x=\sin t, y=\csc t, \frac{\pi}{6} \leq t<\frac{\pi}{2}$

7. $x=2+\cos t, y=1+\sin t, 0 \leq t \leq \frac{\pi}{2}$

