Section 10.2: Calculus with Parametric Curves

Calculus with Parametric Curves

Arclength If $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, then the length of the curve from $t=\alpha$ to $t=\beta$ is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

1. Find the length of the curve $x=3 t-t^{3}, y=3 t^{2}, 0 \leq t \leq 2$.
2. Find the length of the curve $x=2 t^{2}+\frac{1}{t}, y=8 \sqrt{t}, 1 \leq t \leq 3$

Surface Area

- If the curve $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, is revolved around the x axis, then the resulting surface area is given by

$$
S A=2 \pi \int_{\alpha}^{\beta} g(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

- If the curve $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, is revolved around the y axis, then the resulting surface area is given by

$$
S A=2 \pi \int_{\alpha}^{\beta} f(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

3. Find the surface area obtained by revolving the curve $x=3 t-t^{3}, y=3 t^{2}, 0 \leq t \leq 1$ about the x-axis.
4. Find the surface area obtained by revolving the curve $x=e^{t}-t, y=4 e^{t / 2}, 0 \leq t \leq 1$ about the y-axis.

