Section 10.4 Areas and Lengths in Polar Coordinates

In this section, we develop a formula for the area of a region whose boundary is given by a polar equation. Recall the area of a sector is $A = \frac{1}{2}r^2\theta$, where r is the radius and θ is the radian measure of the central angle.

Let R be the region, illustrated the figure below, bounded by the polar curve $r = f(\theta)$ and the rays $\theta = a$ and $\theta = b$.

FIGURE 2

The area A of the polar region R is $A = \int_a^b \frac{1}{2} \left[f(\theta) \right]^2 d\theta = \int_a^b \frac{1}{2} r^2 d\theta.$

1. Find the area of the region that is bounded by $r = \frac{1}{\theta}$ that lies in the sector $\frac{\pi}{2} \le \theta \le 2\pi$.

2. Find the area of the region that is bounded by $r = \sin \theta + \cos \theta$ that lies in the sector $0 \le \theta \le \pi$.

3. Sketch the curve $r = 2\sin\theta$ and find the area it encloses.

				31			r	
				2				
				4				
				-				
				1				
2	2		1	0	1			
3	-12	-	1	0		4	f	
				-1	 			
		_		-2				
				-2				
				-2				
				-2				

4. Find the area of the shaded region.

5. Sketch the curve $r = 1 - \sin \theta$ and find the area it encloses.

					3				
					3				
					-2-				
					-1				
-3	-	2	-	1	0]	2	2	3
					-1				
					-2				

Let R be the region that is bounded by $f(\theta)$ and $g(\theta)$, $a \le \theta \le b$, as shown below. Then the area of R is

$$A = \int_{a}^{b} \frac{1}{2} \left([f(\theta)]^{2} - [g(\theta)]^{2} \right) d\theta$$

4

6. Sketch the region inside the circle $r = 4 \sin \theta$ and outside the circle r = 2. Find the area of the region.

					3					
					-2					
					-1-					
- 3	-	2	-	1	0]]	ļ	2	2	3
-3		2	-	1	0]		2	}	3
-3		2		1	0]		2	<u>}</u>	3
-3		2		1	0]		2	<u>}</u>	3
-3		2		1]			2	
-3		2		1]			2	
-3		2	_	1]				
-3		2		1	-1]		2		3
-3		2		1	-1					3
-3		2			-1					

7. Sketch the region inside the circle $r = 3\cos\theta$ and outside the cardioid $r = 1 + \cos\theta$. Find the area of the region.

					3	 	 		
					5				
					2				
					-2-				
					-				
					1				
	-	_							
_3	_	2	_	1	0	1		•	
-3		2	-	1	0]	2	2	3
-3	-	2	-	1	0]	2	2	3
-3	-	2	-	1	0]	2	2	3
-3	-	2	_	1	0]	2) 	3
-3		2		1	0]	2	2	3
-3		2		1	0]	2	<u>}</u>	3
-3		2		1	0]) 	3
-3		2		1	0]	2		
-3		2		1	0]			
-3		2		1	0			2	
-3		2		1	-1			2	
-3		2		1	0			<u>}</u>	
-3		2	=	1	0			<u>}</u>	3
-3		2	_	1	0 1]) 	3
-3		2	_	1	0 1 2]	2	2	3
-3		2	_	1	0 1 2]			3
-3		2	-	1	0 1 2			2 	3
-3		2	-	1	0 1 2				3
-3		2	-		0 1 2-				3
-3		2		1	0			2	3
-3		2		1	0 1 2-			2	

8. Set up but do not evaluate an integral that gives the area of one loop of the polar curve $r = \sin(3\theta)$.

The lenth of the polar curve
$$r = f(\theta) \ a \le \theta \le b$$
, is $L = \int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$.

9. Find the lenth of the polar curve $r = \theta^2, 0 \le \theta \le \frac{\pi}{2}$

10. Set up but do not evaluate an integral that gives the length of one loop of the curve $r = \cos(2\theta)$.