Section 10.4 Areas and Lengths in Polar Coordinates

In this section, we develop a formula for the area of a region whose boundary is given by a polar equation. Recall the area of a sector is $A=\frac{1}{2} r^{2} \theta$, where r is the radius and θ is the radian measure of the central angle.

Let R be the region, illustrated the figure below, bounded by the polar curve $r=f(\theta)$ and the rays $\theta=a$ and $\theta=b$.

FIGURE 2

The area A of the polar region R is $A=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta$.

FIGURE 3

1. Find the area of the region that is bounded by $r=\frac{1}{\theta}$ that lies in the sector $\frac{\pi}{2} \leq \theta \leq 2 \pi$.
2. Find the area of the region that is bounded by $r=\sin \theta+\cos \theta$ that lies in the sector $0 \leq \theta \leq \pi$.
3. Sketch the curve $r=2 \sin \theta$ and find the area it encloses.

4. Find the area of the shaded region.

$r=4+3 \sin \theta$
5. Sketch the curve $r=1-\sin \theta$ and find the area it encloses.

Let R be the region that is bounded by $f(\theta)$ and $g(\theta), a \leq \theta \leq b$, as shown below. Then the area of R is

$$
A=\int_{a}^{b} \frac{1}{2}\left([f(\theta)]^{2}-[g(\theta)]^{2}\right) d \theta
$$

6. Sketch the region inside the circle $r=4 \sin \theta$ and outside the circle $r=2$. Find the area of the region.

7. Sketch the region inside the circle $r=3 \cos \theta$ and outside the cardioid $r=1+\cos \theta$. Find the area of the region.

8. Set up but do not evaluate an integral that gives the area of one loop of the polar curve $r=\sin (3 \theta)$.

The lenth of the polar curve $r=f(\theta) a \leq \theta \leq b$, is $L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$.
9. Find the lenth of the polar curve $r=\theta^{2}, 0 \leq \theta \leq \frac{\pi}{2}$
10. Set up but do not evaluate an integral that gives the length of one loop of the curve $r=\cos (2 \theta)$.

