Section 11.1 Sequences

Definition: A sequence is an ordered list of numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$. The sequence $\left\{a_{1}, a_{2}\right.$, $\left.a_{3}, . ., a_{100}, ..\right\}$ is often denoted by $\left\{a_{n}\right\}_{n=1}^{\infty}$ or $\left\{a_{n}\right\}$. The domain of a sequence is a subset of all non negative integers, usually indexed by n. We will deal with infinite sequences, and so each term, a_{n}, will have a successor, a_{n+1}.

1. Write out the first 3 terms of the sequence $\left\{\frac{n+1}{n+3}\right\}_{n=2}^{\infty}$.
2. Write out the first 4 terms of the recursive sequence:
(a) $a_{1}=6, a_{n+1}=\frac{a_{n}}{n}$
(b) $a_{1}=1, a_{n+1}=2 a_{n}-3$
3. Find a general formula for the sequence, assuming the pattern continues. Assume n begins with 1 .
(a) $\left\{\frac{1}{4},-\frac{2}{9}, \frac{3}{16},-\frac{4}{25}, \ldots\right\}$
(b) $\left\{1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\right\}$
(c) $\left\{3,2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \ldots\right\}$
(d) $\{-3,5,-7,9, \ldots\}$

Definition: If $\lim _{n \rightarrow \infty} a_{n}=L$, then we say the sequence $\left\{a_{n}\right\}$ converges to L. If $\lim _{n \rightarrow \infty} a_{n}=\infty$ or does not exist, then we say the sequence $\left\{a_{n}\right\}$ diverges.

4. Determine whether the following sequences converge or diverge. If it converges, find the limit. If it diverges, explain why.
(a) $a_{n}=\sqrt{\frac{4 n+3}{7 n+6}}$
(b) $a_{n}=\arccos \left(\frac{-n+1}{2 n+3}\right)$
(c) $a_{n}=\frac{1}{3} \ln (3 n+1)-\frac{1}{3} \ln (4 n)$
(d) $a_{n}=\frac{n}{(\ln n)^{2}}$
(e) $a_{n}=e^{\frac{n-n^{2}}{2 n+1}}$
(f) $a_{n}=\frac{n}{n!}$
(g) $a_{n}=\{0,2,0,2,0,2, \ldots\}$

Sequences whose terms alternate signs: For alternating sequences, the sequence converges if and only if the absolute value of the sequence goes to zero. Moreover, if If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$ Illustration of an alternating sequence that converges to 0 : Note: The absolute value of the terms of the sequence go to zero!

Illustration of an alternating sequence that diverges: The absolute value of the terms of the sequence do not go to zero!

5. Find the limit of the sequence, or if it diverges, explain why.
(a) $a_{n}=\frac{(-1)^{n} n}{2 n+2}$
(b) $a_{n}=3+(-0.4)^{n}$
(c) $a_{n}=\cos (n)$ and $a_{n}=\cos \left(\frac{1}{n}\right)$
(d) $a_{n}=\frac{\sin (n)}{n}$

Definition: We say a sequence is bounded below if there is a number N so that $a_{n} \geq N$ for all n. We say a sequence is bounded above if there is a number M so that $a_{n} \leq M$ for all n. If a_{n} is bounded both above and below, then we say the sequence is bounded.
6. Determine whether the sequence is bounded:
a.) $a_{n}=\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}$
b.) $a_{n}=\left\{\frac{n^{2}}{n+1}\right\}_{n=1}^{\infty}$
c.) $a_{n}=\left\{4^{-n}\right\}_{n=0}^{\infty}$

Definition: We say a sequence a_{n} is increasing if $a_{n}<a_{n+1}$ from some point on. We say a sequence a_{n} is decreasing if $a_{n}>a_{n+1}$ from some point on. If a sequence is either increasing or decreasing, then we say the sequence is monotonic.
7. Determine whether following sequences are increasing, decreasing, or not monotonic.
a.) $a_{n}=\frac{3}{n+5}$
b.) $a_{n}=e^{-n}$
c.) $a_{n}=2+\frac{1}{n}$
(d) $a_{n}=\cos \left(\frac{n \pi}{2}\right)$
8. Is it true that a decreasing bounded sequence must converge?
9. For the following recursive sequences:
(a) $a_{1}=3, a_{n+1}=2+\frac{a_{n}}{3}$. Find the first 5 terms of the sequence. Find the limit of the sequence.
(b) $a_{1}=2, a_{n+1}=1-\frac{1}{a_{n}}$. Find the first 5 terms of the sequence. Find the limit of the sequence.
(c) $a_{1}=4, a_{n+1}=\frac{12}{8-a_{n}}$ is bounded and decreasing. Find the next two terms of the sequence and find the limit.

