Section 11.1 Sequences

Definition: A sequence is an ordered list of numbers $a_1, a_2, a_3,...,a_n,...$ The sequence $\{a_1, a_2, a_3,...,a_{100},..\}$ is often denoted by $\{a_n\}_{n=1}^{\infty}$ or $\{a_n\}$. The domain of a sequence is a subset of all non negative integers, usually indexed by n. We will deal with infinite sequences, and so each term, a_n , will have a successor, a_{n+1} .

1. Write out the first 3 terms of the sequence $\left\{\frac{n+1}{n+3}\right\}_{n=2}^{\infty}$.

2. Write out the first 4 terms of the recursive sequence:

(a)
$$a_1 = 6, a_{n+1} = \frac{a_n}{n}$$

(b) $a_1 = 1, a_{n+1} = 2a_n - 3$

3. Find a general formula for the sequence, assuming the pattern continues. Assume n begins with 1.

(a)
$$\{\frac{1}{4}, -\frac{2}{9}, \frac{3}{16}, -\frac{4}{25}, ...\}$$

(b)
$$\{1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\}$$

(c)
$$\{3, 2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \dots\}$$

(d) $\{-3, 5, -7, 9, ...\}$

Definition: If $\lim_{n \to \infty} a_n = L$, then we say the sequence $\{a_n\}$ converges to L. If $\lim_{n \to \infty} a_n = \infty$ or does not exist, then we say the sequence $\{a_n\}$ diverges.

4. Determine whether the following sequences converge or diverge. If it converges, find the limit. If it diverges, explain why.

(a)
$$a_n = \sqrt{\frac{4n+3}{7n+6}}$$

(b)
$$a_n = \arccos\left(\frac{-n+1}{2n+3}\right)$$

(c)
$$a_n = \frac{1}{3}\ln(3n+1) - \frac{1}{3}\ln(4n)$$

©Amy Austin, February 25, 2019

(d)
$$a_n = \frac{n}{(\ln n)^2}$$

(e)
$$a_n = e^{\frac{n-n^2}{2n+1}}$$

(f)
$$a_n = \frac{n}{n!}$$

(g)
$$a_n = \{0, 2, 0, 2, 0, 2, ...\}$$

Sequences whose terms alternate signs: For alternating sequences, the sequence converges if and only if the absolute value of the sequence goes to zero. Moreover, if If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$

Illustration of an alternating sequence that converges to 0: Note: The absolute value of the terms of the sequence go to zero!

Illustration of an alternating sequence that diverges: The absolute value of the terms of the sequence do not go to zero!

5. Find the limit of the sequence, or if it diverges, explain why.

(a)
$$a_n = \frac{(-1)^n n}{2n+2}$$

(b)
$$a_n = 3 + (-0.4)^n$$

(c)
$$a_n = \cos(n)$$
 and $a_n = \cos\left(\frac{1}{n}\right)$

(d)
$$a_n = \frac{\sin(n)}{n}$$

Definition: We say a sequence is bounded below if there is a number N so that $a_n \ge N$ for all n. We say a sequence is bounded above if there is a number M so that $a_n \le M$ for all n. If a_n is bounded both above and below, then we say the sequence is bounded.

6. Determine whether the sequence is bounded:

a.)
$$a_n = \left\{\frac{1}{n^2}\right\}_{n=1}^{\infty}$$

b.)
$$a_n = \left\{\frac{n^2}{n+1}\right\}_{n=1}^{\infty}$$

c.)
$$a_n = \{4^{-n}\}_{n=0}^{\infty}$$

Definition: We say a sequence a_n is increasing if $a_n < a_{n+1}$ from some point on. We say a sequence a_n is decreasing if $a_n > a_{n+1}$ from some point on. If a sequence is either increasing or decreasing, then we say the sequence is monotonic.

7. Determine whether following sequences are increasing, decreasing, or not monotonic.

a.)
$$a_n = \frac{3}{n+5}$$

b.)
$$a_n = e^{-n}$$

c.)
$$a_n = 2 + \frac{1}{n}$$

(d) $a_n = \cos\left(\frac{n\pi}{2}\right)$

9. For the following **recursive sequences**:

(a) $a_1 = 3$, $a_{n+1} = 2 + \frac{a_n}{3}$. Find the first 5 terms of the sequence. Find the limit of the sequence.

(b) $a_1 = 2$, $a_{n+1} = 1 - \frac{1}{a_n}$. Find the first 5 terms of the sequence. Find the limit of the sequence.

(c) $a_1 = 4$, $a_{n+1} = \frac{12}{8 - a_n}$ is bounded and decreasing. Find the next two terms of the sequence and find the limit.