Section 11.10 Taylor and Maclaurin Series

Let
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$

= $c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + c_4 (x-a)^4 + c_5 (x-a)^5 + \dots + c_i (x-a)^i + \dots$
Substituting $x = a$ into $f(x)$ gives $c_0 = f(a)$

Take the derivative of f(x):

$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + 5c_5(x-a)^4 + \dots$$

Substituting x = a into f'(x) gives $c_1 = f'(a)$

Likewise,

$$f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \dots$$

Substituting x = a into f''(x) gives $f''(a) = 2c_2$, yielding $c_2 = \frac{f''(a)}{2}$

$$f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \dots$$

Substituting x = a into f'''(x) gives $f'''(a) = 2 \cdot 3c_3 = 3!c_3$, yielding $c_3 = \frac{f'''(a)}{3!}$

Continuing in this manner, we find $c_i = \frac{f^i(a)}{i!}$

Thus, we define the **Taylor Series** for
$$f(x)$$
 about $x = a$ to be

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \dots$$
where $f^{(n)}(a)$ is the *n*th derivative of $f(x)$ at $x = a$.

1. Find the Taylor Series for f centered at a = 5 if $f^{(n)}(5) = \frac{(-2)^n n!}{7^n (n+5)}$. What is the radius of convergence of this Taylor Series?

2. Find $f^{(31)}(5)$ if $f(x) = \sum_{n=0}^{\infty} \frac{2^{n+1}(x-5)^n}{(n+2)!}$, that is the 31^{st} derivative of f at x = 5.

3. Find the Taylor Series for $f(x) = e^{2x}$ centered at a = -1. What is the associated radius of convergence?

4. Find the Taylor Series for $f(x) = \frac{1}{x}$ centered at a = 7. What is the associated radius of convergence?

5. Find the Taylor Series for $f(x) = \ln x$ centered at 2. What is the associated radius of convergence?

Definition: The Maclaurin Series for the function f(x) is defined to be the Taylor Series about x = 0. That is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

where $f^{(n)}(0)$ is the *n*th derivative of f(x) at x = 0.

Note: We have been dealing with Maclaurin series in section 11.8 and 11.9 since a Maclaurin series is just a power series centered at a = 0. Thus, in particular, in section 11.9 we were asked to find a power series representation for $\frac{1}{1-3x}$ and we found $\frac{1}{1-3x} = \sum_{n=0}^{\infty} 3^n x^n$. Since this series is centered at zero, it is also considered a Maclaurin series.

6. Find the Maclaurin Series for $f(x) = e^x$. What is the associated radius of convergence?

7. Find the Maclaurin Series for $f(x) = \cos x$. What is the associated radius of convergence?

8. Find the Maclaurin Series for $f(x) = \sin x$. What is the associated radius of convergence?

9. Find the Maclaurin Series for $f(x) = e^{x^2}$.

10. Evaluate the indefinite integral as an infinite series $\int x \cos \frac{x}{2} dx$.

11. Evaluate the indefinite integral as an infinite series $\int \sin(4x^2) dx$.

12. Find the sum of the series
$$\sum_{n=0}^{\infty} \frac{(-1)^n (\pi)^{2n+1}}{3^{2n+1} (2n+1)!}$$
.

13. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n 2^n x^{3n}}{n!}.$