Section 11.10 Taylor and Maclaurin Series

Let $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$

$$
=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}+\ldots+c_{i}(x-a)^{i}+\ldots
$$

Substituting $x=a$ into $f(x)$ gives $c_{0}=f(a)$

Take the derivative of $f(x)$:

$$
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+5 c_{5}(x-a)^{4}+\ldots
$$

Substituting $x=a$ into $f^{\prime}(x)$ gives $c_{1}=f^{\prime}(a)$

Likewise,

$$
f^{\prime \prime}(x)=2 c_{2}+2 \cdot 3 c_{3}(x-a)+3 \cdot 4 c_{4}(x-a)^{2}+4 \cdot 5 c_{5}(x-a)^{3}+\ldots
$$

Substituting $x=a$ into $f^{\prime \prime}(x)$ gives $f^{\prime \prime}(a)=2 c_{2}$, yielding $c_{2}=\frac{f^{\prime \prime}(a)}{2}$

$$
f^{\prime \prime \prime}(x)=2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4(x-a)+3 \cdot 4 \cdot 5 c_{5}(x-a)^{2}+\ldots
$$

Substituting $x=a$ into $f^{\prime \prime \prime}(x)$ gives $f^{\prime \prime \prime}(a)=2 \cdot 3 c_{3}=3!c_{3}$, yielding $c_{3}=\frac{f^{\prime \prime \prime}(a)}{3!}$

Continuing in this manner, we find $c_{i}=\frac{f^{i}(a)}{i!}$

Thus, we define the Taylor Series for $f(x)$ about $x=a$ to be
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots$
where $f^{(n)}(a)$ is the $n t h$ derivative of $f(x)$ at $x=a$.

1. Find the Taylor Series for f centered at $a=5$ if $f^{(n)}(5)=\frac{(-2)^{n} n \text { ! }}{7^{n}(n+5)}$. What is the radius of convergence of this Taylor Series?
2. Find $f^{(31)}(5)$ if $f(x)=\sum_{n=0}^{\infty} \frac{2^{n+1}(x-5)^{n}}{(n+2)!}$, that is the $31^{\text {st }}$ derivative of f at $x=5$.
3. Find the Taylor Series for $f(x)=e^{2 x}$ centered at $a=-1$. What is the associated radius of convergence?
4. Find the Taylor Series for $f(x)=\frac{1}{x}$ centered at $a=7$. What is the associated radius of convergence?
5. Find the Taylor Series for $f(x)=\ln x$ centered at 2 . What is the associated radius of convergence?

Definition: The Maclaurin Series for the function $f(x)$ is defined to be the Taylor Series about $x=0$. That is

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

where $f^{(n)}(0)$ is the $n t h$ derivative of $f(x)$ at $x=0$.
Note: We have been dealing with Maclaurin series in section 11.8 and 11.9 since a Maclaurin series is just a power series centered at $a=0$. Thus, in particular, in section 11.9 we were asked to find a power series representation for $\frac{1}{1-3 x}$ and we found $\frac{1}{1-3 x}=\sum_{n=0}^{\infty} 3^{n} x^{n}$. Since this series is centered at zero, it is also considered a Maclaurin series.
6. Find the Maclaurin Series for $f(x)=e^{x}$. What is the associated radius of convergence?
7. Find the Maclaurin Series for $f(x)=\cos x$. What is the associated radius of convergence?
8. Find the Maclaurin Series for $f(x)=\sin x$. What is the associated radius of convergence?
9. Find the Maclaurin Series for $f(x)=e^{x^{2}}$.
10. Evaluate the indefinite integral as an infinite series $\int x \cos \frac{x}{2} d x$.
11. Evaluate the indefinite integral as an infinite series $\int \sin \left(4 x^{2}\right) d x$.
12. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(\pi)^{2 n+1}}{3^{2 n+1}(2 n+1)!}$.
13. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{3 n}}{n!}$.

