Section 11.11 Taylor Polynomials

Definition: Let $f(x)$ be a function. Recall the Taylor Series for $f(x)$ at $x=a$ is
$f(x)=\sum^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$. A partial sum of a Taylor Series is called a Taylor Polynomial. More specifically, the $n^{\text {th }}$ degree Taylor Polynomial for $f(x)$ at $x=a$ is

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

where $f^{(i)}(a)$ is the i th derivative of $f(x)$ at $x=a$.
The Taylor polynomial at $x=a$ is useful in approximating a function near $x=a$. The first degree Taylo polynomial at $x=a$ is the same as the tangent line to $f(x)$ at $x=a$, and the second degree Taylor polynomial at $x=a$ is

1. Find both the first and second degree Taylor polynomial for $f(x)=\sqrt{x}$ at $x=4$.

$$
f(x)=\sqrt{x} \quad f(4)=2 \quad T_{2}(x)=f(4)+\frac{f^{\prime}(4)}{1!}(x-4)+\frac{f^{\prime \prime}(4)}{2!}(x-4)^{2}
$$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \quad f^{\prime}(4)=\frac{1}{4} \quad T_{1}(x)=2+\frac{1}{4}(x-4)
$$

$$
f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}} \quad T_{2}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}
$$

$$
f^{\prime \prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}=-\frac{1}{4 x^{3 / 2}} \quad f^{\prime \prime}(4)=-\frac{1}{4(4)^{3 / 2}}=-\frac{1}{32}
$$

Title: Apr 3-2:22 PM (Page 1 of 2)
2. Find the third degree Taylor Polynomial for $f(x)=x e^{x}$ at $x=2$.
$T_{3}(x)=f(2)+f^{\prime}(2)(x-2)+\frac{f^{\prime \prime}(2)}{2!}(x-2)^{2}+\frac{f^{\prime \prime \prime}(2)}{3!}(x-2)^{3}$
$f(x)=x e^{x} \quad \int_{x} f(2)=2 e^{2} 2 e^{2}$
$f^{\prime}(x)=e^{x}+x e^{x} \quad \frac{f^{\prime}(2)=e^{2}+2 e}{x} \frac{x}{x}$
$f^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x}=2 e^{2}+x e \quad f^{\prime \prime}(2)=2 e^{2}+2 e^{2}=4 e^{2}$
$f^{\prime \prime \prime}(x)=2 e^{x}+e^{x}+x e^{x}=3 e^{x}+x e^{x} \quad f^{n}(2)=3 e^{2}+2 e^{2}=5 e^{2}$
$T_{3}(x)=2 e^{2}+3 e^{2}(x-2)+\frac{4 e^{2}}{2}(x-2)^{2}+\frac{5 e^{2}}{6}(x-2)^{3}$
3. Find $T_{8}(x)$ for $f(x)=x^{2} e^{-2 x^{3}}$ at $x=0$. can use maclaurin!
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
$x^{2} e^{-2 x^{3}}=x^{2} \sum_{n=0}^{\infty} \frac{\left(-2 x^{3}\right)}{n!}$
$=x^{2} \sum_{n=0}^{\infty} \frac{(-2)^{n} x^{3^{n}}}{n!}$
$=\sum_{n=0}^{\infty} \frac{(-2)^{n} x^{3 n+2}}{n!}$
$=x^{2}-2 x^{5}+\frac{4 x^{8}}{2}+\cdots$
$n=0$
$n=2$

Title : Apr 3-2:23 PM (Page 2 of 2)

