Section 11.3 The Integral Test and Estimation of Sums

The Integral Test: If $f(x)$ is a positive, continuous, decreasing function on $[m, \infty]$, and $a_{k}=f(k)$, then $\sum_{k=m}^{\infty} a_{k}$ and $\int_{m}^{\infty} f(x) d x$ either both converge or both diverge.

We can only use the integral test on series whose terms are (eventually) positive and decreasing!

1. Determine whether the following series converge or diverge.
a.) $\sum_{n=1}^{\infty} \frac{n}{n+1}$
b.) $\sum_{n=1}^{\infty} \frac{1}{(7 n+8)^{3}}$
c.) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
d.) $\sum_{n=0}^{\infty} n e^{-n^{2}}$
e.) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$

We learned in section 7.8 that $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ will converge if $p>1$ and will diverge if $p \leq 1$. This gives us the following result:

P-series Test: The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, where $p>0$, is convergent if $p>1$ and divergent if $p \leq 1$. The special case where $p=1$ is called the harmonic series, which diverges.
A few remarks: Since not all series begin with an index of 1 , we can often write $\sum_{n=1}^{\infty} a_{n}$ simply as $\sum a_{n}$. We are typically only concerned where the index of the series begins if we are interested in the sum of the series. Since convergence of a series is dependent on the end behavior of its terms, we can use the notation $\sum a_{n}$ if we are only interested in the convergence or divergence of the series but not the sum.
2. Determine whether the following series converges or diverges and support your answer.
a.) $\sum_{n=3}^{\infty} \frac{10}{n^{\sqrt{2}}}$
b.) $\sum_{n=3}^{\infty} \frac{1}{n \sqrt{n}}$
c.) $\frac{1}{\sqrt[4]{2}}+\frac{1}{\sqrt[4]{3}}+\frac{1}{\sqrt[4]{4}}+\frac{1}{\sqrt[4]{5}}+\ldots$

Remainder Estimate for The Integral Test: Suppose $s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n}$ is the $n^{\text {th }}$ partial sum of the convergent series $\sum_{n=1}^{\infty} a_{n}$. Then the remainder in using s_{n} to approximate the sum S is defined to be $R_{n}=S-s_{n}=\sum_{i=n+1}^{\infty} a_{i}=a_{n+1}+a_{n+2}+\ldots$.
Moreover, if $\sum_{n=1}^{\infty} a_{n}$ was shown to be convergent by the integral test where $a_{n}=f(n)$, then

$$
R_{n}=\sum_{i=n+1}^{\infty} a_{i} \leq \int_{n}^{\infty} f(x) d x
$$

3. For the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, Find s_{6}, the sum of the first 6 terms. Using the Remainder Estimate for the Integral Test, estimate the error, R_{6}, in using the sum of the first 6 terms as an approximation to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
4. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$. Using the Remainder Estimate for the Integral Test, find a value of n that will ensure the error in the approximation, s_{n}, is less than 0.00001 . Express your answer as ' $n>$ \qquad '.
5. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$. Using the Remainder Estimate for the Integral Test, find a value of n that will ensure the error in the approximation, s_{n}, is less than $\frac{1}{95}$. Express your answer as ' $n>$ \qquad '.

Once this vaue of n is found, approximate $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ to within $\frac{1}{95}$.

