Section 11.3 The Integral Test and Estimation of Sums

The Integral Test: If f(x) is a positive, continuous, decreasing function on $[m, \infty]$, and $a_k = f(k)$, then $\sum_{k=m}^{\infty} a_k$ and $\int_m^{\infty} f(x) dx$ either both converge or both diverge.

We can only use the integral test on series whose terms are (eventually) positive and decreasing!

- 1. Determine whether the following series converge or diverge.
 - a.) $\sum_{n=1}^{\infty} \frac{n}{n+1}$

b.)
$$\sum_{n=1}^{\infty} \frac{1}{(7n+8)^3}$$

©Amy Austin, February 28, 2019

c.)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

d.)
$$\sum_{n=0}^{\infty} n e^{-n^2}$$

e.)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

We learned in section 7.8 that $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ will converge if p > 1 and will diverge if $p \le 1$. This gives us the following result:

P-series Test: The **p-series** $\sum_{n=1}^{\infty} \frac{1}{n^p}$, where p > 0, is convergent if p > 1 and divergent if $p \le 1$. The special case where p = 1 is called the **harmonic series**, which diverges.

A few remarks: Since not all series begin with an index of 1, we can often write $\sum_{n=1}^{\infty} a_n$ simply as $\sum a_n$. We are typically only concerned where the index of the series begins if we are interested in the *sum* of the series. Since convergence of a series is dependent on the *end behavior* of its terms, we can use the notation $\sum a_n$ if we are only interested in the convergence or divergence of the series but not the sum.

2. Determine whether the following series converges or diverges and support your answer.

a.)
$$\sum_{n=3}^{\infty} \frac{10}{n^{\sqrt{2}}}$$

b.)
$$\sum_{n=3}^{\infty} \frac{1}{n\sqrt{n}}$$

c.)
$$\frac{1}{\sqrt[4]{2}} + \frac{1}{\sqrt[4]{3}} + \frac{1}{\sqrt[4]{4}} + \frac{1}{\sqrt[4]{5}} + \dots$$

Remainder Estimate for The Integral Test: Suppose $s_n = \sum_{i=1}^n a_i = a_1 + a_2 + ... + a_n$ is the n^{th} partial sum of the convergent series $\sum_{n=1}^{\infty} a_n$. Then the **remainder** in using s_n to approximate the sum S is defined to be $R_n = S - s_n = \sum_{i=n+1}^{\infty} a_i = a_{n+1} + a_{n+2} + ...$

Moreover, if $\sum_{n=1}^{\infty} a_n$ was shown to be convergent by the integral test where $a_n = f(n)$, then

$$R_n = \sum_{i=n+1}^{\infty} a_i \le \int_n^{\infty} f(x) \, dx.$$

3. For the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, Find s_6 , the sum of the first 6 terms. Using the Remainder Estimate for the Integral Test, estimate the error, R_6 , in using the sum of the first 6 terms as an approximation to $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

4. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^6}$. Using the Remainder Estimate for the Integral Test, find a value of n that will ensure the error in the approximation, s_n , is less than 0.00001. Express your answer as $n > \underline{\qquad }'$.

5. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^4}$. Using the Remainder Estimate for the Integral Test, find a value of *n* that will ensure the error in the approximation, s_n , is less than $\frac{1}{95}$. Express your answer as '*n* >_____'.

Once this value of n is found, approximate $\sum_{n=1}^{\infty} \frac{1}{n^4}$ to within $\frac{1}{95}$.