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Section 11.3 The Integral Test and Estimation of Sums

The Integral Test: If f(x) is a positive, continuous, decreasing function on [m, o0, and a, = f(k),
OO0 — P ——

then 3 ap and f f(x)dz either both converge or both diverge.
k=m m

We can only use the integral test on series whose terms are (eventually)
positive and decreasing!
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1. Determine whether the following series converge or diverge.
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> 1
We learned in section 7.8 that f o dx will converge if p > 1 and will diverge if p < 1. This gives us
.z 2 : 2

the following result:

o 1
P-series Test: The p-series 3 — where p > 0, is convergent if p > 1 and divergent if p < 1. The

n=1 1
special case where p =1 is called the harmonic series, which diverges.

o0
A few remarks: Since not all series begin with an index of 1, we can often write } a, simply as }_ ay,.

We are typically only concerned where the index of the series begins if we are interested in the sum of
the series. Since convergence of a series is dependent on the end behavior of its terms, we can use the
notation Y a, if we are only interested in the convergence or divergence of the series but not the sum.

2. Determine whether the following series converges or diverges and support your answer.
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n
Remainder Estimate for The Integral Test:| Suppose s, = > a; = a; + a2+ ... + anSiS the nth
) i=1
o0

partial sum of the convergent series . a,. Then the remainder in using s, to approximate the sum
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Moreover, if § a, was shown to be convergent by the integral test where a, = f(n), then
n=1
1@ § a; < g::f(:u) dx.
i=n+1 7
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3. For the series 3 — . Find s, the sum of the first 6 terms. Using the Remainder Estimate for the
=1 N s

Integral Test, estimate the error, Rg, in using the sum of the first 6 terms as an approximation to
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4. Consider the series >
n=1

that will ensure the error in the approximation, s,, is less than 0.00001.

n >

o0
5. Consider the series >
n—=

. . . . . 1 ,
will ensure the error in the approximation, s, is less than 95 Express your answer as 'n >
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1 . . . .
—5- Using the Remainder Estimate for the Integral Test, find a value of n
n - -

EXPI‘@SS your answer as

Using the Remainder Estimate for the Integral Test, find a value of n that

—
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Once this vaue of n is found, approximate 3 — to within 9

Bound on cemander
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