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Section 11.5 Alternating Series

The convergence tests we have discussed so far apply only to series of positive terms. In this section and
the next we learn how to deal with series that are not necessarily positive. Of particular importance are
alternating series, whose terms alternate signs.

Definition: An alternating series is a series whose terms alternate signs. For example,

oo (—1)ntl 11 1 . . . . . .
—=1- 3 + 371 + ... is an alternating series. We would like to know under what conditions
n=1 n

does an alternating series converge?

n=1

o0
The Alternating Series Test: The alternating series ) (71)’where ap > 0, converges if it satisfies

va
both conditions given below:
® a,1 < a, for all n (ie the sequence {a, } is decreasing).
e lima,=0
n—oo
Tllustration as to why this is true.
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Consider ¥ (—1)"~!b,, where b, > 0 and a,, decreases to zero.
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1. Determine whether the following series are conv ergent
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Remainder Estimate and The Alternating Series Estimation Theorem

o0
Ir 3 (71)"la.,l,is a convergent alternating series, and a partial sum
n=1

n
sn = »_(—1)"a; is used to approximate the sum of the series with remainder R,,, then
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c.) Determine the minimum number of terms we need to add in order to find the sum with error less
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oo _1 n .
3. approximate (=1) to within an accuracy of 1072,
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