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Section 11.6 Absolute Convergence and the Ratio Test
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Given any series, Y. a,, we can consider the corresponding series > |a,| = |a1| + |az| + |as| + ...
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We learned in section 11.5 that > both converge by the alternating series test. What
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happens if we consider:
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Definition: A series is absolutely convergent if > |a,| converges. If > a, converges, but 3 |a,|
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diverges, then the > a, is conditionally convergent. Note: If > a, is a series of positive terms, and
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> ay, converges, then by default it is absolutely convergent.
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If a series is absolutely convergent, then it is convergent.
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1. Determine whether the following series are absolutely convergent, conditionally convergent, or diver-
gent.
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The Ratio Test:

a [e.e]
o If li_)m ol o< 1, then the series >~ a, is absolutely convergent (and therefore convergent).
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= 00, then the series Y a, is divergent.
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=1, then the test fails.

2. Determine whether the following series are absolutely convergent, conditionally convergent, or diver-
gent.

00 3"

nzzzl ns(—Z)”

a.)

n'9(—100)"



©Amy Austin, March 23, 2019

3. For which of the following series is the ratio test inconclusive?
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