Section 6.1: Area Between Curves

The area A bounded by the curves y = f(x), y = g(x) and the lines x = a and x = b, where $f(x) \ge g(x)$ for all x in the interval [a, b] is

$$A = \int_{a}^{b} \left(f(x) - g(x) \right) \, dx$$

The area A bounded by the curves x = f(y), x = g(y) and the lines y = c and y = d, where $f(y) \ge g(y)$ for all y in the interval [c, d] is

$$A = \int_{c}^{d} \left(f(y) - g(y) \right) \, dy$$

If we are asked to find the area bounded by the curves y = f(x), y = g(x) where $f(x) \ge g(x)$ for some values of x but $g(x) \ge f(x)$ for other values of x, we must split the integral at each intersection point.

1. Sketch the region R bounded by $y = \sin x$, y = 0, x = 0, $x = \frac{\pi}{3}$. Find the area of R.

2. Sketch the region R bounded by $y = \cos x$, y = 0, x = 0, $x = \frac{2\pi}{3}$. Find the area of R.

3. Sketch the region R bounded by $y = e^x$, $y = x^2 - 1$, $-1 \le x \le 1$. Find the area of R.

4. Sketch the region R bounded by $y = 4x^2$, $y = x^2 + 3$. Find the area of R.

5. Sketch the region R bounded by $y = x^2 + 1$, $y = 3 - x^2$, x = -2, x = 2. Set up but do not evaluate an integral that gives the area of R.

6. Sketch the region R bounded by y = |x|, $y = x^2 - 2$. Set up but do not evaluate an integral that gives the area of R.

7. Sketch the region R bounded by $y = \sin x$, $y = \cos x$, $x = -\frac{\pi}{2}$, $x = \frac{\pi}{2}$. Set up but do not evaluate an integral that gives the area of R.

8. Sketch the region R bounded by $x = 2 - 2y^2$, $x = 2y^2 - 2$. Find the area of R.

9. Sketch the region R bounded by $y^2 = x$, x - 2y = 3. Find the area of R.

•

10. Sketch the region R bounded by $y = x^2$, the tangent line to this parabola at (1,1) and the x-axis. Find the area of R.

•