Section 6.1: Area Between Curves

The area A bounded by the curves $y=f(x), y=g(x)$ and the lines $x=a$ and $x=b$, where $f(x) \geq g(x)$ for all x in the interval $[a, b]$ is

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

The area A bounded by the curves $x=f(y), x=g(y)$ and the lines $y=c$ and $y=d$, where $f(y) \geq g(y)$ for all y in the interval $[c, d]$ is

$$
A=\int_{c}^{d}(f(y)-g(y)) d y
$$

If we are asked to find the area bounded by the curves $y=f(x), y=g(x)$ where $f(x) \geq g(x)$ for some values of x but $g(x) \geq f(x)$ for other values of x, we must split the integral at each intersection point.

1. Sketch the region R bounded by $y=\sin x, y=0, x=0, x=\frac{\pi}{3}$. Find the area of R.

2. Sketch the region R bounded by $y=\cos x, y=0, x=0, x=\frac{2 \pi}{3}$. Find the area of R.

3. Sketch the region R bounded by $y=e^{x}, y=x^{2}-1,-1 \leq x \leq 1$. Find the area of R.

4. Sketch the region R bounded by $y=4 x^{2}, y=x^{2}+3$. Find the area of R.

5. Sketch the region R bounded by $y=x^{2}+1, y=3-x^{2}, x=-2, x=2$. Set up but do not evaluate an integral that gives the area of R.

6. Sketch the region R bounded by $y=|x|, y=x^{2}-2$. Set up but do not evaluate an integral that gives the area of R.

7. Sketch the region R bounded by $y=\sin x, y=\cos x, x=-\frac{\pi}{2}, x=\frac{\pi}{2}$. Set up but do not evaluate an integral that gives the area of R.

8. Sketch the region R bounded by $x=2-2 y^{2}, x=2 y^{2}-2$. Find the area of R.

9. Sketch the region R bounded by $y^{2}=x, x-2 y=3$. Find the area of R.

10. Sketch the region R bounded by $y=x^{2}$, the tangent line to this parabola at $(1,1)$ and the x-axis. Find the area of R.

