Section 6.2: Volume

In this section, we will learn how to find the volume of a solid by cutting the solid into a set of cross-sectional 'slices'. If we have a formula for the volume of each slice, a Riemann sum will approximate the total volume, and therefore an integral will give the exact volume of the solid.

Definition: let S be a solid that lies between $x=a$ and $x=b$. If the cross-sectional area of S passing through x and perpendicular to the x-axis is $A(x)$, then the volume of S is

$$
V=\int_{a}^{b} A(x) d x
$$

Note: When we use this formula, it is important to remember that $A(x)$ is the area of a moving cross-section obtained by slicing the solid through x perpendicular to the x-axis.

Volumes of solids of revolution

Disk Method: Use when the cross-section of the solid is in the shape of a disk.

- Rotation around the x axis:

$$
V=\int_{a}^{b} \pi[f(x)]^{2} d x
$$

- Rotation around the y axis:

*, meor

$$
V=\int_{c}^{d} \pi[g(y)]^{2} d y
$$

1. Sketch the region R bounded by $y=e^{x}, x=-1, x=2, y=0$. Find the volume of the solid obtained by R about the x axis.

2. Sketch the region R bounded by $y=x^{3}, y=27, x=0$. Find the volume of the solid obtained by rotating R about the y axis.

3. Sketch the region R bounded by $y=\ln x, x=0, y=0, y=5$. Find the volume of the solid obtained by rotating R about the y axis.

4. Sketch the region R bounded by $y=\sqrt{x}, y=0, x=2$. Set up but do not evaluate an integral that finds the volume generated by rotating R about the line $x=2$.

5. Sketch the region R bounded by $y=x^{2}+1$ and $y=2$. Find the volume generated by rotating R about the line $y=2$.

Washer Method: Use when the cross-section of the solid is in the shape of a washer.
Consider the washer shown here:

The area of this washer is $A=\pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)$.

For the image above, $R=f(x)$ and $r=g(x)$, therefore $V=\int_{a}^{b} \pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x$.
6. Sketch the region R bounded by $y=x^{2}, y=2 x$. Find the volume generated by rotating R about the y axis.

7. Sketch the region R bounded by $y=x, y=x^{2}$. Find the volume generated by rotating R about the line $y=-1$.

8. Refer to the figure below to set up but do not evaluate an integral that finds the volume generated by rotating the given region about the specified line.

(a) R_{2} about $B C$
(b) R_{3} about $A B$

The Method of Slicing: Here, the solid is not the result of a revolution. Rather, the solid is defined by describing the base (bottom) of the solid, and the shape of a cross-section perpendicular to one of the coordinate axes. For example, in the illustration below, the base of the solid is an elliptical region and cross-sections perpendicular to the x-axis are equilateral triangles. To find the volume, integrate the area of a cross-section, $A(x)$ in this case, for $-1 \leq x \leq 1$, that is $V=\int_{-1}^{1} A(x) d x$, where $A(x)$ is the area of the equilateral triangle for $-1 \leq x \leq 1$.

(a) The solid
9. Find the volume of S where the base of S is the region bounded by $y=x^{2}$ and $y=\sqrt{x}$. The cross sections perpendicular to the x-axis are squares.
10. Find the volume of the solid S whose base is the ellipse $x^{2}+4 y^{2}=1$. The cross sections of S perpendicular to the y-axis are squares.
11. Find the volume of the solid S whose base is the triangular region with vertices $(0,0),(1,0)$ and $(0,2)$. The cross sections of S perpendicular to the x-axis are semi-circles.
12. Find the volume of the solid S whose base is the region bounded by the parabola $y=x^{2}$ and $y=1$. The cross sections of S perpendicular to the y-axis are equilateral triangles.

