Section 7.1: Integration by parts

<u>Integration by parts:</u>

$$\int u \, dv = uv - \int v \, du$$

Proof: Recall by the product rule that (uv)' = u'v + uv'. Integrate both sides:

$$\int (uv)' = \int u'v + \int uv'$$
. Thus $uv = \int u'v + \int uv'$, hence $\int uv' = uv - \int u'v$

When using integration by parts, you mush choose u and dv so that when you apply the formula, $\int v du$ is integratable.

The following acronym may help you determine what u should be. Move down the chart and choose u to be the *first* term you see that starts with the letter on the left.

If	Then $u =$
L	[Logarithm]: $\ln x$
I	[Inverse trig]: $\arctan x$, $\arccos x$, $\arcsin x$
Р	[Polynomial]: $(x^2, x^3 + x, \text{ etc})$
E	[Exponential]: e^x
Τ	[Trig]: $\sin x$ or $\cos x$

1.
$$\int xe^{-2x} dx$$

© Amy Austin, January 30, 2019

$$2. \int_0^1 (2x+1)e^x \, dx$$

$$3. \int x^5 e^{x^3} dx$$

© Amy Austin, January 30, 2019

$$4. \int x \sin(-5x) \, dx$$

$$5. \int x^2 \cos(2x) \, dx$$

$$6. \int \frac{\ln x}{x^7} \, dx$$

$$7. \int_{1}^{4} \ln \sqrt{x} \, dx$$

8.
$$\int \arcsin x \, dx$$

9.
$$\int_0^1 \arctan x \, dx$$

 ${\Large \bigodot} Amy \; Austin, \; January \; 30, \; 2019$

$$10. \int e^x \cos(4x) \, dx$$

$$11. \int e^{5x} \sin(x) \, dx$$