Section 7.1: Integration by parts

Integration by parts:

$$
\int u d v=u v-\int v d u
$$

Proof: Recall by the product rule that $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$. Integrate both sides:
$\int(u v)^{\prime}=\int u^{\prime} v+\int u v^{\prime}$. Thus $u v=\int u^{\prime} v+\int u v^{\prime}$, hence $\int u v^{\prime}=u v-\int u^{\prime} v$
When using integration by parts, you mush choose u and $d v$ so that when you apply the formula, $\int v d u$ is integratable.

The following acronym may help you determine what u should be. Move down the chart and choose u to be the first term you see that starts with the letter on the left.

If	Then $u=$
L	[Logarithm]: $\ln x$
I	[Inverse trig]: arctan $x, \arccos x, \arcsin x$
P	[Polynomial]: $\left(x^{2}, x^{3}+x\right.$, etc $)$
E	[Exponential]: e^{x}
T	[Trig]: $\sin x$ or $\cos x$

1. $\int x e^{-2 x} d x$
2. $\int_{0}^{1}(2 x+1) e^{x} d x$
3. $\int x^{5} e^{x^{3}} d x$
4. $\int x \sin (-5 x) d x$
5. $\int x^{2} \cos (2 x) d x$
6. $\int \frac{\ln x}{x^{7}} d x$
7. $\int_{1}^{4} \ln \sqrt{x} d x$
8. $\int \arcsin x d x$
9. $\int_{0}^{1} \arctan x d x$
10. $\int e^{x} \cos (4 x) d x$
11. $\int e^{5 x} \sin (x) d x$
