Section 7.2: Trigonometric Integrals

Identities needed in this section:

1. $\sin ^{2} x+\cos ^{2} x=1$
2. $\tan ^{2} x+1=\sec ^{2} x$
3. $\cot ^{2} x+1=\csc ^{2} x$
4. $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
5. $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$

Type I: Integrals of the form $\int \sin ^{m} x \cos ^{n} x d x$, where m and n are non-negative integers.
Case 1: EITHER m or n (or both) is odd. If the power on $\sin x$ is odd, factor out one $\sin x$ and let $u=\cos x$. If the power on $\cos x$ is odd, factor out one $\cos x$ and let $u=\sin x$. If both powers are odd, do one of the above mentioned but not both.

1. $\int \sin ^{4} x \cos ^{3} x d x$
2. $\int \sin ^{3}(10 x) d x$
3. $\int \cos ^{5} x \sqrt{\sin x} d x$
4. $\int_{0}^{\pi / 2} \cos ^{3} x \sin ^{3} x d x$

Case 2: BOTH m and n are even. Use the identities $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ and $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$.

1. $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2} x d x$
2. $\int \frac{\cos ^{2}(\ln x)}{x} d x$

Type II: Integrals of the form $\int \sec ^{m} x \tan ^{n} x d x$, where m and n are non-negative integers.
Case 1: The power on $\tan x$ is odd. Factor out $\sec x \tan x$ and let $u=\sec x$.

1. $\int \tan ^{3} x \sec ^{3} x d x$
2. $\int \cot ^{5} x \csc x d x$

Case 2: The power on $\sec x$ is even. Factor out $\sec ^{2} x$ and let $u=\tan x$.

1. $\int x \tan ^{4}\left(x^{2}\right) \sec ^{4}\left(x^{2}\right) d x$
2. $\int \tan ^{9} x \sec ^{4} x d x$. Note here, the power on tangent is odd *and* the power on secant is even. Hence treat it as a case $1 * \mathrm{OR}^{*}$ case 2 .
3. $\int \tan ^{2} x d x$

Connecting volume of revolution with our new techniqes of integration.

1. Find the volume obtained by rotating the region bounded by $y=\cos x, y=0, x=0$ and $x=\frac{\pi}{2}$ about the x axis.
2. Find the volume obtained by rotating the region bounded by $y=\cos x, y=0, x=0$ and $x=\frac{\pi}{2}$ about the line $x=\frac{\pi}{2}$
3. Find the volume obtained by rotating the region bounded by $y=\sec ^{2} x, y=0, x=0$ and $x=\frac{\pi}{4}$ about the x axis.
