Section 7.2: Trigonometric Integrals

Identities needed in this section:

1. $\sin^2 x + \cos^2 x = 1$ 2. $\tan^2 x + 1 = \sec^2 x$ 3. $\cot^2 x + 1 = \csc^2 x$ 4. $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ 5. $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$

Type I: Integrals of the form $\int \sin^m x \cos^n x \, dx$, where *m* and *n* are non-negative integers.

<u>Case 1</u>: *EITHER* m or n (or both) is odd. If the power on $\sin x$ is odd, factor out one $\sin x$ and let $u = \cos x$. If the power on $\cos x$ is odd, factor out one $\cos x$ and let $u = \sin x$. If both powers are odd, do one of the above mentioned but not both.

1. $\int \sin^4 x \cos^3 x \, dx$

2. $\int \sin^3(10x) \, dx$

3.
$$\int \cos^5 x \sqrt{\sin x} \, dx$$

4.
$$\int_0^{\pi/2} \cos^3 x \sin^3 x \, dx$$

<u>Case 2</u>: BOTH m and n are even. Use the identities $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ and $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$.

1.
$$\int_0^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx$$

2.
$$\int \frac{\cos^2(\ln x)}{x} \, dx$$

Type II: Integrals of the form $\int \sec^m x \tan^n x \, dx$, where *m* and *n* are non-negative integers. <u>Case 1</u>: The power on $\tan x$ is odd. Factor out $\sec x \tan x$ and let $u = \sec x$.

1. $\int \tan^3 x \sec^3 x \, dx$

<u>Case 2</u>: The power on sec x is even. Factor out $\sec^2 x$ and let $u = \tan x$.

1.
$$\int x \tan^4(x^2) \sec^4(x^2) dx$$

2. $\int \tan^9 x \sec^4 x \, dx$. Note here, the power on tangent is odd *and* the power on secant is even. Hence treat it as a case 1 *OR* case 2.

3. $\int \tan^2 x \, dx$

Connecting volume of revolution with our new techniqes of integration.

1. Find the volume obtained by rotating the region bounded by $y = \cos x$, y = 0, x = 0 and $x = \frac{\pi}{2}$ about the x axis.

2. Find the volume obtained by rotating the region bounded by $y = \cos x$, y = 0, x = 0 and $x = \frac{\pi}{2}$ about the line $x = \frac{\pi}{2}$

3. Find the volume obtained by rotating the region bounded by $y = \sec^2 x$, y = 0, x = 0 and $x = \frac{\pi}{4}$ about the x axis.