Section 7.3: Trigonometric Substitution

Identities commonly used in this section:
a.) $\sin ^{2} \theta+\cos ^{2} \theta=1$
b.) $\tan ^{2} \theta=\sec ^{2} \theta-1$
c.) $\sin (2 x)=2 \sin x \cos x$

A few interals you must know:

1. $\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C$ Proof: $\int \sec \theta d \theta=\int \sec \theta\left(\frac{\sec (\theta)+\tan (\theta)}{\sec (\theta)+\tan (\theta)}\right) d \theta=\int\left(\frac{\sec ^{2}(\theta)+\sec (\theta) \tan (\theta)}{\sec (\theta)+\tan (\theta)}\right) d \theta$.

If we let $u=\sec (\theta)+\tan (\theta)$, then $d u=\left(\sec ^{2}(\theta)+\sec (\theta) \tan (\theta)\right) d \theta$, which gives

$$
\int \frac{1}{u} d u=\ln |u|=\ln |\sec (\theta)+\tan (\theta)| .
$$

2. $\int \sec ^{3} \theta d \theta=\frac{1}{2}(\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|)+C$

The general idea of integration by trigonometric substitution is to transform an algebraic integral that involves one of the general forms in the table below into a trig integral that can be integrated using the techniques of section 7.2.

Form	Substitution	Identity Used	Domain
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$	$\cos ^{2} \theta=1-\sin ^{2} \theta$	$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$	$\sec ^{2} \theta=\tan ^{2} \theta+1$	$0 \leq \theta \leq \pi, \theta \neq \frac{\pi}{2}$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$	$\tan ^{2} \theta=\sec ^{2} \theta-1$	$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$

1. $\int \frac{d x}{x^{2} \sqrt{1-x^{2}}}$
© Amy Austin, February 6, 2019
2. $\int \frac{\sqrt{x^{2}+9}}{x^{4}} d x$
© Amy Austin, February 6, 2019
3. $\int \frac{\sqrt{9 x^{2}-4}}{x} d x$
4. $\int \frac{x^{2}}{\sqrt{1-9 x^{2}}} d x$
© Amy Austin, February 6, 2019
5. $\int_{5 \sqrt{2}}^{10} \frac{d x}{x^{3} \sqrt{x^{2}-25}}$
6. $\int_{0}^{2 / 3} \frac{1}{\left(4+9 x^{2}\right)^{5 / 2}} d x$
7. $\int \frac{d x}{\sqrt{x^{2}-8 x}}$
8. $\int \frac{1}{\left(x^{2}+6 x+13\right)^{3 / 2}} d x$
