## Section 7.4: Integration by Partial Fractions

Suppose $f(x)=\frac{g(x)}{h(x)}$ where $g(x)$ and $h(x)$ are polynomials and the degree of $h(x)$ is greater than the degree of $g(x)$ (if this is not true, you must first do long division). In order to integrate a partial fraction problem, you must first find the Partial Fraction Decomposition:

First FACTOR the denominator BEFORE setting up the decomposition

- Case I: The denominator is a product of linear factors, none repeating, then the Partial Fraction Decomposition has the form:

$$
\frac{x+1}{(x-2)(2 x-11)}=\frac{A}{x-2}+\frac{B}{2 x-11}
$$

- Case II: The denominator is a product of linear factors, some repeating, then the Partial Fraction Decomposition has the form:

$$
\frac{x+1}{(x-1)(x-2)^{3}}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}+\frac{D}{(x-2)^{3}}
$$

- Case III: The denominator contains irreducible quadratic factors, none repeating, then the Partial Fraction Decomposition has the form:

$$
\frac{x+1}{(x-2)^{2}\left(x^{2}+1\right)}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C x+D}{x^{2}+1}
$$

- Case IV: The denominator contains irreducible quadratic factors, some repeating, then the Partial Fraction Decomposition has the form:

$$
\frac{x+5}{(x-2)\left(x^{2}+4\right)^{2}}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+4}+\frac{D x+E}{\left(x^{2}+4\right)^{2}}
$$

Once you find $A, B$, etc., then you integrate the result.
A common integral: $\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C$

1. $\int \frac{1}{2 x^{3}+5 x^{2}+3 x} d x=$
2. $\int_{-1}^{0} \frac{x^{3}}{x+2} d x=$
© Amy Austin, February 13, 2019
3. $\int \frac{1}{(x-1)^{2}(x+4)} d x=$
4. $\int \frac{x^{4}-11 x^{2}+14 x+8}{x^{3}-4 x^{2}+4 x} d x=$
5. $\int \frac{3 x^{3}+18}{x^{2}\left(x^{2}+9\right)} d x=$
6. $\int_{0}^{1} \frac{x+6}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=$
