Section 7.8: Improper Integrals

Type I: An Improper Integral is of Type I if one (or both) of the limits of integration is infinite. Here, we study the area under the graph of f(x) for very large (in absolute value) x.

- 1. $\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$
- 2. $\int_{-\infty}^{a} f(x) dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) dx$
- 3. $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx.$ If either integrals diverge, then $\int_{-\infty}^{\infty} f(x) dx$ diverges. If both integrals converge, then $\int_{-\infty}^{\infty} f(x) dx$ converges to the sum of the two integrals.
- $1. \int_{1}^{\infty} \frac{1}{\sqrt{x}} \, dx$
- $2. \int_3^\infty \frac{1}{x} \, dx$
- 3. $\int_{1}^{\infty} \frac{dx}{x^2}$

Note: $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ will converge if p > 1 and will diverge if $p \le 1$. Also note the lower limit of integration does not have to be 1 for this to be true.

$$4. \int_{e}^{\infty} \frac{dx}{x \ln x}$$

$$5. \int_0^\infty x^2 e^{-x^3} \, dx$$

$$6. \int_{6}^{\infty} \frac{1}{x^2 - 7x + 12} \, dx$$

$$7. \int_{-\infty}^{0} x e^x \, dx$$

$$8. \int_{-\infty}^{\infty} \frac{dx}{x^2 + 4}$$

Type II: An Improper Integral is of Type II if there is a discontinuity (division by 0) on the interval [a, b].

(a)
$$\int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx$$

- (b) Suppose f(x) is discontinuous at x = b: Then $\int_a^b f(x) dx = \lim_{t \to b^-} \int_a^t f(x) dx$
- (c) If f(x) is discontinuous at some c where a < c < b, then $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.$ If either of the integrals diverges, then $\int_a^b f(x) \, dx$ diverges. If both integrals converge, then $\int_a^b f(x) \, dx$ converges to the sum of the two integrals.

9.
$$\int_9^{36} \frac{1}{\sqrt[3]{x-9}} \, dx$$

$$10. \int_0^{5/4} \frac{1}{4x - 5} \, dx$$

11.
$$\int_{-1}^{8} \frac{1}{\sqrt[3]{x}} \, dx$$

12.
$$\int_{-1}^{2} \frac{1}{x^4} \, dx$$

Comparison Theorem for Improper Integrals:

Suppose f(x) and g(x) are continuous, positive functions on the interval $[a, \infty)$. Also, suppose that $f(x) \ge g(x)$ on the interval $[a, \infty)$. Then:

(i) If $\int_a^\infty f(x) dx$ converges, so does $\int_a^\infty g(x) dx$. 'If the bigger converges, so does the smaller'

(**Note:** If $\int_a^\infty f(x) dx$ diverges, no conclusion can be drawn about $\int_a^\infty g(x) dx$.

(ii) If $\int_a^\infty g(x) dx$ diverges, so does $\int_a^\infty f(x) dx$. 'If the smaller diverges, so does the larger'

(**Note:** If $\int_a^\infty g(x) dx$ converges, no conclusion can be drawn about $\int_a^\infty f(x) dx$).

13. Determine whether the following integrals converge or diverge:

a.)
$$\int_{1}^{\infty} \frac{x}{x^5 + 1} dx$$

$$b.) \int_2^\infty \frac{1}{x + e^{2x}} \, dx$$

$$c.) \int_{1}^{\infty} \frac{\sin^2 x}{x^4} \, dx$$

$$d.) \int_1^\infty \frac{2 + e^{-x}}{x} \, dx$$