Section 12.1: Three-Dimensional Coordinate System

In three dimensions, a point P is represented as an ordered triple $P(x, y, z)$. The orientation of the x, y, and z axes is shown below, and the three axes divide space into eight octants. The first octant, in the foreground, is determined by the positive axes.

We can project a point onto each of the three coordinate planes, for example the projection of the point $(1,6,8)$ onto the $x y$-plane is $(1,6,0)$ and likewise the projection of the point $(1,6,8)$ onto the $y z$-plane is $(0,6,8)$ and onto the $x z$-plane is $(1,0,8)$.

Coordinate axis

Example 1: Describe the intersection of the planes $z=3$ and $y=-2$.

Planes: We know an equation of the form $y=m x+b$ determines a line in \mathbb{R}^{2}. What does it represent in \mathbb{R}^{3} ?

An equation of a plane is an equation of the form $a x+b y+c z=d$.
Example 2: Sketch the graph of $2 x+4 y+6 z=12$.

Cylinders: Recall the equation of a circle in \mathbb{R}^{2} with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$. What does $(x-h)^{2}+(y-k)^{2}=r^{2}$ represent in \mathbb{R}^{3} ?

Example 3: Sketch the graph of
a.) $x^{2}+y^{2}=4$
b.) $x^{2}+z^{2}=9,-2 \leq y \leq 5$
c.) $y^{2}+z^{2}=4, x \geq 0$

Spheres: An equation of a sphere with center (h, k, l) and radius r is

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

In what way does a sphere intersect a plane?
(i) The sphere does not intersect the plane. This happens if the distance from the center of the sphere to the plane is greater than the radius of the sphere.
(ii) The intersection of a sphere and a plane is a point. This happens if the distance from the center of the sphere to the plane is equal to the radius of the sphere. In this case the plane is tangent to the sphere.
(iii) The intersection of a sphere and a plane is a circle. This happens if the distance from the center of the sphere to the plane is less than the radius of the sphere.

Example 3: Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}+8 x-6 y+2 z+17=0$.

Example 4: What is the equation of the sphere with center $(1,2,3)$ that touches the $x y$-plane?

Example 5: Find the equation of the sphere with radius 3 and center $(1,4,3)$. What is the intersection of this sphere with the three coordinate planes?
a.) Intersection with the $x y$-plane
b.) Intersection with the $x z$-plane
c.) Intersection with the $y z$-plane

Distance formula in three dimensions: The distance between the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is $|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.

Midpoint of a line segment: The midpoint of the line segment joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$.

Example 6: Given the points $A(5,5,1), B(3,3,2)$, and $C(1,4,4)$, determine whether $\triangle A B C$ is isosceles, right, or both.

Example 7: What is the equation of the sphere if one of its diameters has endpoints $(2,4,3)$ and $(1,-6,4)$?

Example 8: Describe the following regions in the dimension indicated.
a.) $y=2-x$ in \mathbb{R}^{2} and \mathbb{R}^{3}
b.) $x^{2}+y^{2} \leq 25$ in \mathbb{R}^{2} and \mathbb{R}^{3}
c.) $1 \leq z \leq 3$ in \mathbb{R}^{3}
d.) $1<x^{2}+y^{2}+z^{2}<25$ in \mathbb{R}^{3}

