Section 12.2: Vectors in Three Dimension

A three dimensional vector is an ordered triple $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. The numbers a_{1}, a_{2} and a_{3} are called the components of the vector \vec{a}. If a vector starts at the point $A\left(a_{1}, a_{2}, a_{3}\right)$ and ends at the point $B\left(b_{1}, b_{2}, b_{3}\right)$, then the vector with representation $\overrightarrow{A B}$ is given by $\overrightarrow{A B}=\left\langle b_{1}-a_{1}, b_{2}-a_{2}, b_{3}-a_{3}\right\rangle$.

Example 1: Find the components of the vector with initial point $A(-2,4,1)$ and terminal point $B(2,2,-1)$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the origin.

The Algebra of Vectors: Suppose $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ are vectors and c is a scalar.
a.) Scalar Multiplication: $c \vec{a}=\left\langle c a_{1}, c a_{2}, c a_{3}\right\rangle$. (Changes magnitude if $c \neq \pm 1$ and direction if $c<0$).
b.) Vector Sum: $\overrightarrow{a+b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle$. ('Tip to tail')
c.) Vector Difference: $\overrightarrow{a-b}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle$. ('Tail to tail')
d.) Vector Length: $|\vec{a}|=\sqrt{\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\left(a_{3}\right)^{2}}$.
e.) Unit Vector: A unit vector in the direction of \vec{a} is $\vec{u}=\frac{\vec{a}}{|\vec{a}|}$. We call $\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle$ and $\vec{k}=\langle 0,0,1\rangle$ standard basis vectors, and $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$.

Example 2: Given $\vec{a}=\langle 1,2,-1\rangle$ and $\vec{b}=\langle 0,3,-5\rangle$, find:
a.) $\overrightarrow{a+2 b}$
b.) $|\overrightarrow{a-b}|$
c.) A unit vector in the direction of \vec{b}.
d.) A vector in the direction of $\overrightarrow{a+b}$ with length 7 .

Example 3: Show the vectors $2 \vec{i}+6 \vec{j}-4 \vec{k}$ and $-3 \vec{i}-9 \vec{j}+6 \vec{k}$ are parallel.

